

August 14, 2007

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Bearing Capacity and Settlement Evaluation

(Culvert at STA. 796+06.29) SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03

Document #0072

Dear Mr. Weeks:

This letter presents the findings of the preliminary evaluation of the proposed culvert and embankment at Station 796+06.29 on the above-referenced project. The findings of other culvert and embankment evaluations will be submitted in separate documents.

It is our understanding that a new culvert will be constructed at Station 796+06.29 for the above referenced project. The culvert will be a 66-inch Type A conduit, in accordance with ODOT Item 707.01 (Metallic Coated Corrugated Steel Conduits), approximately 488 feet long. Preliminary plans indicate that existing grade is somewhat irregular along the length of the culvert and the proposed flow line ranges from a few feet below to several feet above existing grade. It is therefore anticipated that the culvert will be constructed in accordance with ODOT CMS Item 603.05 Method B. The maximum cover over the culvert at this location is approximately 90 feet. The inlet and outlet of the culvert will be supported by headwalls flush with the face of the pipe. At the time of preparing this letter no further information was available regarding the culvert.

It should be noted that the results of these evaluations are based upon the findings of two culvert borings located along the proposed alignment of the culvert (C-80 and C-81). The borings were advanced to depths ranging between 42 and 47 feet below the ground surface. Logs of the borings, a plan and profile drawing showing the approximate locations of the borings, a legend of the boring log terminology and general information regarding the drilling procedures are attached. The surveyed ground elevations at the boring locations are reported on the logs.

Exploration Findings

Borings C-80 and C-81 encountered 33.5 and 39.8 feet of soil, respectively, overlying siltstone and sandstone bedrock. The overburden consisted of very stiff to hard silt (A-4b) and sandy silt

Michael D. Weeks, P.E., P.S. August 14, 2007 Page 2

(A-4a). The underlying bedrock was weathered and fractured to varying degrees but generally improved in quality with depth.

Bearing Capacity Evaluation

The preliminary plans indicate that the invert elevations at the inlet and outlet of the proposed culvert are 839.88 and 771.66, respectively. The bottoms of the headwall footings were assumed to be 4 feet below the invert elevations to place them below the frost zone and prevent scour of the headwall (Ohio BDM Section 200). Based on the results of the borings, it is anticipated that the footing at the inlet will bear in hard, sandy silt (A-4a) and the footing at the outlet will bear in soft to medium hard, interbedded siltstone and sandstone bedrock. Footings bearing in the hard sandy silt may be designed based on an allowable bearing pressure of up to 6,500 pounds per square foot (psf). Footings bearing in the rock may be designed based on an allowable bearing pressure of 10 tons per square foot (tsf).

Settlement Evaluation

Soil parameters for use in the settlement calculations were estimated using correlations with moisture content and Atterberg limits. Settlement below the centerline of the embankment was evaluated using the maximum cover of the embankment (90 feet) as the surcharge load and using the soil profile encountered in boring C-81.

The settlement analysis indicated that the soil below the embankment will yield a total settlement of 6.9 inches. The analysis indicated that 80% of the consolidation settlement (5.5 inches) will occur within one year after the end of the embankment construction while the time required to achieve the total consolidation settlement (6.9 inches) will be approximately 4.8 years. Secondary compression of the foundation soils beneath the embankment is estimated to produce approximately 1.8 inches of additional settlement over a period of several years following the primary consolidation period.

Settlement at the ends of the culvert, due to the embankment loading, is expected to be one inch or less. Based on this information, and including the secondary consolidation estimate, differential settlement between the point of maximum embankment height and the inlet and outlet of the culvert is expected to be approximately 8.7 inches. The settlement analyses are attached.

Michael D. Weeks, P.E., P.S. August 14, 2007 Page 3

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

BRITATE OF

Respectfully submitted,

DLZ OHIO, INC.

Wael Alkasawneh, P.E. Geotechnical Engineer

Bryan Wilson, P.E.

Senior Geotechnical Engineer

Encl: As noted.

cc: J. Greg Brown, P.E. (TranSystems Corporation), File

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a soils engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Dept\Geotech\Misc\Legends\Geninfo.eng

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- Depth (in feet) refers to distance below the ground surface.
- Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

Blows/Foot Standard
Penetration
0 - 4
4 - 10
10 - 30
30 - 50
over 50

Cohesive Soils - Consistency

<u>Term</u>	Unconfined Compression tons/sq.ft.	Blows/Foot Standard <u>Penetration</u>	Hand <u>Manipulation</u>
Very Soft less th	an 0.25	below 2	Easily penetrated by fist
Soft	0.25 - 0.50	2 - 4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.00	4 - 8	Penetrated by thumb w/ moderate effort
Stiff	1.0 - 2.0	8 - 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 - 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

- b. Color If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".
- c. Texture is based on the ODOT Classification System. Soil particle size definitions are as follows:

Description	<u>Size</u>	<u>Description</u>	<u>Size</u>
Boulders	Larger than 8"	Sand-Coarse	2.00 mm. to 0.42 mm.
Cobbles	8" to 3"	-Fine	0.42 mm. to 0.074 mm.
Gravel-Coarse	3" to 3/4"	Silt	0.074 mm. to 0.005 mm.
-Fine	3/4" to 2.00" mm.	Clay	Smaller than 0.005 mm.

d. The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

e. Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes.

trace - 0 to 10% little - 10 to 20% some - 20 to 35% "and" - 35 to 50%

f. The moisture content of cohesive soils (silts and clays) is expressed relative to plastic properties.

Term Relative Moisture or Appearance

Dry Powdery

Damp Moisture content slightly below plastic limit

Moisture content above plastic limit, but below liquid limit

Wet Moisture content above liquid limit

g.. Moisture content of cohesionless soils (sands and gravels) is described as follows:

Term Relative Moisture or Appearance

Dry No moisture present

Damp Internal moisture, but none to little surface moisture

Moist Free water on surface
Wet Voids filled with free water

10. Rock hardness and rock quality description.

The following terms are used to describe the relative hardness of the bedrock.

<u>Term</u> <u>Description</u>

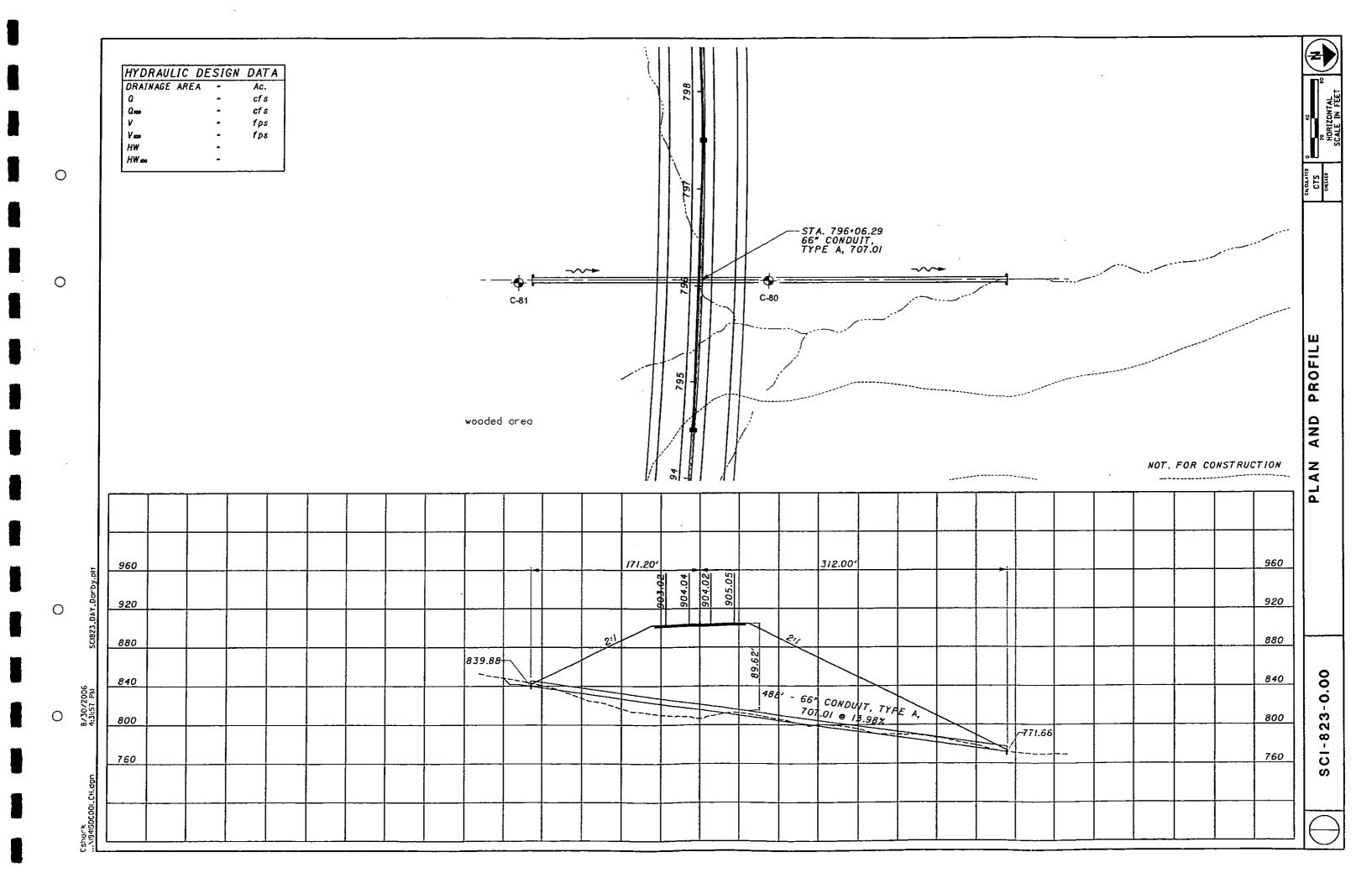
Very Soft Difficult to indent with thumb nails; resembles hard soil but has rock structure

Soft Resists indentation with thumb nail but can be abraded and pierced to a shallow depth by a pencil point.

Medium Hard Resists pencil point, but can be scratched with a knife blade.

Hard Can be deformed or broken by light to moderate hammer blows.

Very Hard Can be broken only by heavy blows, and in some rocks, by repeated hammer blows.


b. Rock Quality Designation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core run.

11. Gradation - when tests are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).

12. When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated graphically.

13. The standard penetration (N) value in blows per foot is indicated graphically.

S:\Dept\Geotech\Legends Manuals Misc\Legends\Legeng.odt

Client:	TranSy	stems,	Inc.				Project: SCI-823-0.00							Job No. 0121-3070.03
LOG C					L	ocation: Sta	i. 796+08.3, 67.3 ft. RT of SR 823 CL Date Drilled: 0	1/18				to	(01/22/07
Depth (ft)	Elev. (ft)	Blows per 6*	Recovery (in)	Sam No		Hand Penetro- meter (Isf)	WATER OBSERVATIONS: Water seepage at: None Water level at completion: 11.6' (prior to coring) 5.6' (inside hollowstem augers) DESCRIPTION	% Aggregate	% C. Sand	% M. Sand	% F. Sand	Sit	% Clay	
0.4 	809.0 808.6		18	1	4		Topsoil - 5" Very stiff to hard brown SILT (A-4b), some clay, trace to little fine to coarse sand; damp to moist.		0	6	6	6	8	10 20 30 40
5 —	 - -	4 6	18	2		2.5		0	1		8	61	30	
-	1	6 10 14	18	3		4.5+								
10 —		7 8 4 5 _	18	4 5		3.0 4.5+	-					ļ		o o
- 15	-1	3 4 7	18	6		4.5+	@ 13.5', contains sandstone fragments.	0	0		2	66	32	♦
- -	- - - -	4 5	18	7		3.0								
20 — —21.0—	788.0	5 5 11	18	8		3.5								
—21.0— -	-	6 9	18	9		4.5+	Very stiff to hard brown SANDY SILT (A-4a), little clay, trace gravel; damp.	!						Ö.
25 — - -		10 16	18	10		4.5+		6	22	-	9	46	17	
- 30	- - - -	8 ₁₀		12		3.0								

Client:	FranSy:	stems,	, Inc.				Project: SCI-823-0.00								Job No. 0121-3070.03
LOG C	F: Bo	ring	C-80		_	ocation: Sta	i. 796+08.3, 67.3 ft. RT of SR 823 CL Date Drilled: 01	/18			A T14	to)1/22/()7
Depth (ft)	Elev. (ft) 779.0	Blows per 6"	Recovery (in)	Samp No.		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: None Water level at completion: 11.6' (prior to coring) 5.6' (inside hollowstern augers) DESCRIPTION	% Aggregate	% C. Sand	M. Sand	% F. Sand		% Clay	Natu P	ANDARD PENETRATION (N) ral Moisture Content, % - L
30	775.5	19 25 33	18	13			Very stiff to hard brown SANDY SILT (A-4a), little clay, trace gravel; damp. Severely weathered brown SANDSTONE, argillaceous.)58-
-	772.0- 	Core 60"	Rec 60"	RQD 91%	R1		Soft to medium hard gray SILTSTONE interbedded with SANDSTONE; very fine to fine grained, moderately weathered, micaceous, argillaceous, thinly laminated to laminated, slightly fractured. @ 37.0'-37.2', brown. @ 38.7', 40.6'-40.8', clay seams.								
45 —	767.0-						Bottom of Boring - 42.0'								
50 —							·							1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
55 55 60			:												

Client:	FranSy:	stems	, Inc.				Project: SCI-823-0.00								Job No. 012	1-3070.03
LOG C	F: Bo	ring	C-81		_	ocation: Sta	. 795+98.7, 180.5 ft. LT of SR 823 CL. Date Drilled: 01	/22				to	(01/23/0)7	
		į		Sam, No		Hand	WATER OBSERVATIONS: Water seepage at: None		GI	RAD	ATIO	NC				
S		.9	(in)		ore .	Penetro- meter	Water level at completion: 21.5' (prior to coring) 8.5' (inside hollowstem augers)	afe	٦	٦	70			l	NDARD PENE ral Moisture Co	
Depth (ft)	Elev. (ft)	s per 6"	very		Press / Core	(tsf)		Aggregate	Sand	Sand	Sand	=	Clay		L 	── LL
	844.6	Blows	Recovery	Drive	Pres	(10.7)	DESCRIPTION	% Ag	% C	% M.	% F.	% Sitt	%		Blows per foot 0 20	30 40
0	843.9						_Topsoil - 8"									1111111
-]	2 5 13	18	1		2.75	Very stiff to hard brown SANDY SILT (A-4a), little clay, trace to little gravel; contains sandstone fragments; dry to damp.							1111		
_	<u></u>	11 17														
5 —	-	17 23	18	2		3.5		9	21	-	10	49	11	1111	1 1 1 1 1 1 1 1 1	
-	-	11 18 20	ļ I	3		4.5+									11111111	
			18			4.5*								1111	1111111111	
-	-	7 12 13	1.0	4		4.5	-									
10 —	1	13	18				·									
] -		9 13 13	18	5		4.5+								1 1 1 1		
] -	-	3					@ 13.5'-15.0', some gravel.							1111		
15—	}	5 7	18	6		4.25	G tota for formation	28	17	-	9	35	11		2	
-	-	8 12 16		7		4.5+	·							1111		1
]	16	18							Ì			İ	1 1 1 1		
-	-	5 7	18	8		3.5								1 1 1 1		
20-	1								ŀ					4 1 1 1		3
-	-	6	11	9		3.5		ļ.					ŀ	1111		
	821.1-		<u> </u>										.) 1 1 1 1 1 1 1		1
		6	18	10		. 4.0	Hard brown SILT (A-4b), little to some fine to coarse sand, trace gravel; contains sandstone fragments; damp.	1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
25 — -	-	5_	-				·				-					
	1	8 12	18	11		4.5+		8	15	'	7	52	18	1111		1
-		4 5 7		12		4.0								1 1 1 1		

Client:	ranSys	stems,	Inc.				Project: SCI-823-0.00								Job No.	0121-	3070.03
LOG O	F: Bo	ring (C-81		_	ocation: Sta	. 795+98.7, 180.5 ft. LT of SR 823 CL Date Drilled: 01	/22				to	(1/23/0	7		
Depth (ft)	Elev. (ft) 814.6	Blows per 6"	Recovery (in)	Duive No.		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: None Water level at completion: 21.5' (prior to coring) 8.5' (inside hollowstem augers) DESCRIPTION	% Aggregate	C. Sand	M. Sand	% F. Sand	Sitt	% Clay	Natun PL	al Moistu IBlows pe	re Cont er foot -	RATION (N) ent, % - ●
30 —		4 5 8		13		~~	Hard brown SILT (A-4b), little to some fine to coarse sand, trace gravel; contains sandstone fragments; damp.								•		
-	-804.8- -802.6-	6 12 Core 60"	18 Rec 60"	14A 14B RQD 96%	R1		 @ 38.5', gray. Severely weathered gray SILTSTONE, argillaceous. Medium hard gray SILTSTONE interbedded with SANDSTONE very fine to fine grained, moderately weathered, micaceous, argillaceous, thinly laminated, slightly fractured. @ 42.5'-42.8', high angle fracture. 								\$		
50 —	797.6						Bottom of Boring - 47.0'								1 1 2 1 1 1 4 1 1 1 4 1 1 1 4 1	+ 1	

CLIENT	TranSystems Inc.	_
PROJECT	Portsmouth Bypass	
SUBJECT	Culvert at Station 796+06	
	Bearing Capacity Analysis	

JOB NUMBER	01	21-3070)-03
SHEET NO.	1	OF	1
COMP. BY	BEW	DATE	8/14/2007
CHECKED BY.		DATE	

Base analysis on results of borings C-80 and C-81.

From hand penetrometer measurements at and below footing elevation:

$$q_u = 4.0$$
 tsi

$$c = 4000 \text{ psf}$$

For cohesive foundation soil:

Meyerhof's Method

$$q_u = c^* N_c^* s_c^* d_c^* + q^* N_q \qquad q = \gamma^* D \quad \text{Can be neglected since footing depth is less than 5 ft}$$

Since footing dimensions are not known assume S_c =1.0. For ϕ = 0, use N_c = 5.14 and N_q = 1

$$q_a = q_u/FS = 6853.3 \text{ psf}$$

Use **q**_a < 6853 psf

For footings bearing in bedrock, use presumptive allowable bearing of 20,000 psf.

Client	TranSystems Inc.
Project	Portsmouth Bypass
B C-4	CTA 70C+06 20

JOB NUMBER	0121-3070.03		
SHEET NO.	1	OF	4
COMP. BY	WMA	DATE	4/25/07
CHECKED BY	BEW	DATE	8/14/07

Calculations Data

Boring	Sample	w	PL	u	PI	Cc1	Cr ²	e。³
C-80	2	20	16	26	10	0.14	0.033	0.9752
C-80	6	18	18	25	7	0.09	0.032	0.9797
C-80	10	15	20	29	9	0.12	0.037	0.9648
C-81	2	15	20	23_	3	0.04	0.029	0.9883
C-81	6	14	20	23	3	0.04	0.029	0.9867
C-81	11	16	18	22	4	0.05	0.028	0.9860
					1			
					18 18 18 18			

Average 0.08 0.031 0.9801 Maximum 0.14 0.037 0.9883

1)Cc=Pl/74 2)Cr=0.000463xLLxGs 3) Based on CR below

Typical Values	
Source: Holtz and Kovacs (198	1)/ Terzaghi, Peck and
Mesri (1995)	
Soil	C°/C°
Organic Sitts	0.035-0.06
Amorphous and Fibrous Peat	0.035-0.085
Organic Clays and Silts	0.04-0.06

Soil	lc"\c"
Organic Sitts	0.035-0.06
Amorphous and Fibrous Peat	0.035-0.085
Organic Clays and Silts	0.04-0.06
Granular Soils	0.01-0.03
Shale and mudstones	0.02-0.04
Silty Clay	0.03-0.06
Peat	0.05-0.07

Boring	Sample	w.	PL	LL	Pi	LI	Consolidation*
C-80	2	20	16	26	10	0.40	Overconsolidated
C-80	6	18	18	25	7	0.00	Overconsolidated
C-80	10	15	20	29	9	-0.56	Overconsolidated
C-B1	2	15	20	23	3	-1.67	Overconsolidated
C-81	6	14	20	23	3	-2.00	Overconsolidated
C-81	11	16	18	22	4	-0.50	Overconsolidated

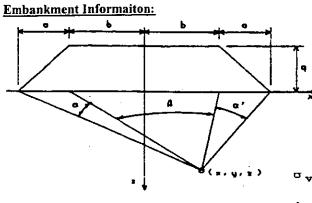
*Overconsolidated when LI<0.7

Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.11)

		Minmum Average Maximum	0.63 1.04 1.38	7.24E-06 1.20E-05 1.59E-05
			· · · · · · · · · · · · · · · · · · ·	
				rijas ir Paris ir
C-81_	11	22	1.38	1.59E-05
C-81	6	23	1:21	1.40E-05
C-81	2	23	1.21	1.40E-05
C-80	10	29	0.63	7.24E-06
C-80	6	25_	0.95	1.11E-05
C-80	2	26_	0.85	9.89E-06
Boring	Sample	LL	C _v *(ft²/day)	C,*(ft²/sec)

Correlation \	Values-Source: Las	mb and	Whitman	(1969)
w%	CR=(C _e /1+e _{e)}			
0.083	2.380	_		

	O. ((() () () ()
9.983	2.389
11,785	2.547
14.487	3.016
17,099	3,825
19.816	4.892
25.352	6.931
28.328	8.079
34.174	10.369
42.400	13.490
51,139	16.388
79.829	23.326
152.740	33,469
341.288	46.114
501.494	52.174


Correlation: CR=-4E-09w^4 + 5E-06w^3 - 0.0021w^2 + 0.4695w - 3.1337 R²=0.9992

Client	TranSystems, Inc.
Projec	t SCI-823-0.00
Item	Culvert at STA.796+06.29
Racod	on C-81

JOB NUMBER		0121-3070.03							
SHEET NO.		2	OF	4					
COMP. BY	÷	WMA	DATE	04/25/07					
CHECKED BY		BEW	DATE	08/14/07					

SETTLEMENT ANALYSIS - EMBANKMENT

Total Settlement

0.572

in

Groundwater Table: 11.0 ft **Embankment Height:** H =90

Fill Unit Weight: 120 q = 10,800 psf

Width of Slope: a = Top half-width of Emb: b =

Distance from CL:

Output Range:

*See Data output Attached

$$c_{\psi}(z) := \left(\frac{d}{d}\right) \left(\sigma(\alpha(z) + \beta(z) + \alpha'(z)) + \rho(\alpha(z) + \alpha'(z)) + x(\alpha(z) - \alpha'(z)) \right)$$

$$\beta(z) := atan \left[\frac{(b-x)}{z} \right] + atan \left[\frac{(b+x)}{z} \right]$$

$$\alpha^{t}(z) := atan \left[\frac{(a+b-x)}{z} \right] - atan \left[\frac{(b-x)}{z} \right]$$

$$\alpha'(z) := atan \left[\frac{(a+b-x)}{z} \right] - atan \left[\frac{(b-x)}{z} \right] \qquad \alpha(z) := atan \left[\frac{(a+b+x)}{z} \right] - atan \left[\frac{(b+x)}{z} \right]$$

Cohesionless

Reference: US Army Corps of Engineers EM 1110-1-1904 "Settlement Analysis", Table C-1

								•	Concatonicas			
	Soil Pro	perties:	Settlement is co	alculated at mid-j	point of layer			•	Soils	Co	hesive So	oils
No.	Bot. of I	_ _ayer	Soil Type	γ_{soil} (pcf)	σ' _c (psf)	σ'_{o} (psf)	Δσz (psf)	σ' _f (psf)	C'	C _r	C_c	e _o
1	10.0	ft	Sandy Silt/Silt	120	14,000	600	10,799	11,399	0.0	0.03	0.08	0.980
2	20.0	ft	Sandy Silt/Silt	120	14,000	1,550	10,786	12,336	0.0	0.03	0.08	0.980
3	30.0	ft	Sandy Silt/Silt	120	14,000	2,126	10,740	12,866	0.0	0.03	0.08	0.980
4	40.0	ft	Sandy Silt/Silt	120	14,000	2,702	10,653	13,355	.0.0	0.03	0.08	0.980
5	0.0			0	0							
6	0.0			0	0							
7	0.0			0	0							
8	0.0			0	0							
9	0.0			0	0							
10	0.0			0	0							
	1 2 3 4 5 6 7 8 9	No. Bot. of I 1 10.0 2 20.0 3 30.0 4 40.0 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0	2 20.0 ft 3 30.0 ft 4 40.0 ft 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0	No. Bot. of Layer Soil Type 1 10.0 ft Sandy Silt/Silt 2 20.0 ft Sandy Silt/Silt 3 30.0 ft Sandy Silt/Silt 4 40.0 ft Sandy Silt/Silt 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0	No. Bot. of Layer Soil Type γ _{soil} (pcf) 1 10.0 ft Sandy Silt/Silt 120 2 20.0 ft Sandy Silt/Silt 120 3 30.0 ft Sandy Silt/Silt 120 4 40.0 ft Sandy Silt/Silt 120 5 0.0 0 0 6 0.0 0 0 7 0.0 0 0 8 0.0 0 0 9 0.0 0 0	No. Bot. of Layer Soil Type γ soil (pcf) σ c (psf) 1 10.0 ft Sandy Silt/Silt 120 14,000 2 20.0 ft Sandy Silt/Silt 120 14,000 3 30.0 ft Sandy Silt/Silt 120 14,000 4 40.0 ft Sandy Silt/Silt 120 14,000 5 0.0 0 0 0 6 0.0 0 0 0 7 0.0 0 0 0 8 0.0 0 0 0 9 0.0 0 0 0	No. Bot. of Layer Soil Type γ_{soil} (pcf) σ'_{c} (psf) σ'_{o} (psf) 1 10.0 ft Sandy Silt/Silt 120 14,000 600 2 20.0 ft Sandy Silt/Silt 120 14,000 1,550 3 30.0 ft Sandy Silt/Silt 120 14,000 2,126 4 40.0 ft Sandy Silt/Silt 120 14,000 2,702 5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No. Bot. of Layer Soil Type γ_{soil} (pcf) σ'_{c} (psf) σ'_{o} (psf) $\Delta \sigma z$ (psf) $1 \ 10.0 \ ft$ Sandy Silt/Silt 120 14,000 600 10,799 2 20.0 ft Sandy Silt/Silt 120 14,000 1,550 10,786 3 30.0 ft Sandy Silt/Silt 120 14,000 2,126 10,740 4 40.0 ft Sandy Silt/Silt 120 14,000 2,702 10,653 5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No. Bot. of Layer Soil Type γ_{soil} (pcf) σ'_{c} (psf) σ'_{o} (psf) $\Delta \sigma z$ (psf) σ'_{f} (psf) σ'_{f} (psf) σ'_{o} (psf) σ'_{o} (psf) σ'_{f} (psf) σ'_{f} (psf) σ'_{f} (psf) σ'_{f} (psf) σ'_{o} (psf) σ'_{o} (psf) σ'_{f} (psf) σ'_{f} (psf) σ'_{o} (psf) σ'_{o} (psf) σ'_{o} (psf) σ'_{o} (psf) σ'_{o} (psf) σ'_{f} (psf) σ'_{o} (psf) σ'_{o	Soil Properties: Settlement is calculated at mid-point of layer No. Bot. of Layer Soil Type γ _{soil} (pcf) σ' _c (psf) σ' _o (psf) Δσz (psf) σ' _f (psf) C' 1 10.0 ft Sandy Silt/Silt 120 14,000 600 10,799 11,399 0.0 2 20.0 ft Sandy Silt/Silt 120 14,000 1,550 10,786 12,336 0.0 3 30.0 ft Sandy Silt/Silt 120 14,000 2,126 10,740 12,866 0.0 4 40.0 ft Sandy Silt/Silt 120 14,000 2,702 10,653 13,355 0.0 5 0.0 0 0 0 6 0.0 0 0 0 7 0.0 0 0 0 8 0.0 0 0 0 9 0.0 0 0 0 9 0.0 0 0	Soil Properties: Settlement is calculated at mid-point of layer No. Bot. of Layer Soil Type γ soil (pcf) σ' c (psf) σ' o (psf) Δσz (psf) σ' f (psf) C' Cr 1 10.0 ft Sandy Silt/Silt 120 14,000 600 10,799 11,399 0.0 0.03 2 20.0 ft Sandy Silt/Silt 120 14,000 1,550 10,786 12,336 0.0 0.03 3 30.0 ft Sandy Silt/Silt 120 14,000 2,126 10,740 12,866 0.0 0.03 4 40.0 ft Sandy Silt/Silt 120 14,000 2,702 10,653 13,355 0.0 0.03 5 0.0 0 0 0 7 0.0 0 0 0 8 0.0 0 0 0 9 0.0 0 0	Soil Properties: Settlement is calculated at mid-point of layer No. Bot. of Layer Soil Type γ soil (pcf) σ' c (psf) σ' o (psf) Δσz (psf) σ' f (psf) C' Cr Cc 1 10.0 ft Sandy Silt/Silt 120 14,000 600 10,799 11,399 0.0 0.03 0.08 2 20.0 ft Sandy Silt/Silt 120 14,000 1,550 10,786 12,336 0.0 0.03 0.08 3 30.0 ft Sandy Silt/Silt 120 14,000 2,126 10,740 12,866 0.0 0.03 0.08 4 40.0 ft Sandy Silt/Silt 120 14,000 2,702 10,653 13,355 0.0 0.03 0.08 5 0.0 0 0 0 7 0.0 0 0 0 8 0.0 0 0 0 9 0.0 0 0 0 9 0.0 0 0

Reference: Geotechnical Engineering Principles and Practices; Coduto, 1999

Overconsolidated Soils - Case I ($\sigma'_0 < \sigma'_c$) Eqn:11.24

$$(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log \left(\frac{\sigma'_f}{\sigma'_0} \right)$$

Overconsolidated Soils - Case II (o'0<o'c<o') Eqn:11.25

$$(\delta_c)_{ut} = \sum \left[\frac{C_r}{1 + e_0} H \log \left(\frac{\sigma'_c}{\sigma'_0} \right) + \frac{C_c}{1 + e_0} H \log \left(\frac{\sigma'_f}{\sigma'_c} \right) \right]$$

Normally Consolidated Soils ($\sigma'_0 = \sigma'_c$) Eqn: 11.23

$$(\delta_c)_{uh} = \sum \frac{C_c}{1+e_0} H \log \left(\frac{\sigma'_f}{\sigma'_0}\right)$$

Cohesionless Soils ($\sigma'_0 = \sigma'_c$)

$$\left(\delta_{c}\right)_{uh} = \sum \frac{1}{C'} H \log \left(\frac{\sigma'_{f}}{\sigma'_{o}}\right)$$

lo. Settlement: 0.200 0.141 ft 0.122 ft 0.109 ft

SUBJECT

Client	TranSystems, Inc.	JOB NUMBER	012	21-30	07.03	
Project	SCI-823-0.00	SHEET NO.		3	OF	4
ltem	Culvert at STA.796+06.29	СОМР. ВУ	WMA	DA	TE	04/25/07
Based on	C-81	CHECKED BY	BEW	DA	TE	08/14/07

TIME RATE SETTLEMENT

Coeffecient of consolidation (c_v) =

7.2E-06 ft²/s

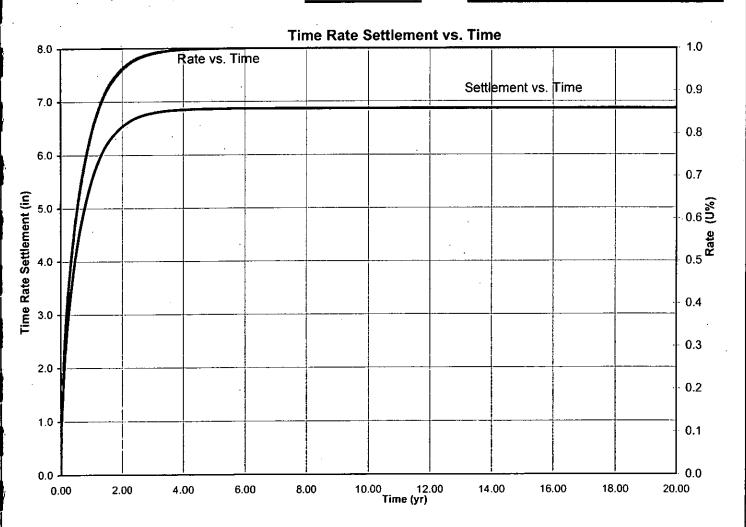
Assumed Life Time =

5 yrs

Drainage Path Condition =

(0 for single drainage; 1 for double drainage)

Thickness of Layer =


40.0 ft

Maximum Time Rate Settlement =

Settlement at (U% =80%) =

6.9 inches

353 days after the end of construction

SUBJECT

Client	TranSystems Inc.
Project	Portsmouth Bypass
Item	Culvert at STA. 796+06.29
	borina C-81

JOB NUMBER	0121-3070.03		
SHEET NO.	4 .	OF	4
COMP. BY	WMA	DATE	04/25/07
CHECKED BY	BEW	DATE	08/14/07

SECONDARY SETTLEMENT ANALYSIS - EMBANKMENT

Thickness (H)
$$\frac{1}{2}$$
 40 ft
 $c_{v=}$ $\frac{7!24E-06}{7!2}$ ft²/s
T= 2.71 (assuming U=0.999)
 $t_{p=}$ 4.8 yrs = 1734.3 days

Time to end of primary consolidation (*) = 4.8 yrs

No.	Soil	H(ft)	w(%)	C _a	s	(inch)
1	Silt and Clay	40	16	0.0037		1.757
2			!			
3			1			

Total Secondary Settlement = 1.8 inches

Secondary Settlement*

$$(\delta_{secondar}) = C_{\alpha}H$$

$$t_p = \frac{T.H^2}{c_v} Assume \ U = 0.999$$

* Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.14)