

August 17, 2007

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Bearing Capacity and Settlement Evaluation (Culvert at STA. 823+45) SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03 Document #0078

Dear Mr. Weeks:

This letter presents the findings of the preliminary evaluation of the proposed culvert and embankment at Station 823+45.11 on the above-referenced project. The findings of other culvert and embankment evaluations will be submitted in separate documents.

It is our understanding that a new culvert will be constructed at Station 823+45.11 for the above referenced project. The culvert will be a 72-inch Type A conduit in accordance with ODOT Item 707.01 (Metallic Coated Corrugated Steel Conduits and Underdrains). Preliminary plans indicate the flow line of the culvert is close to and roughly parallel to existing grade. It is therefore anticipated that the culvert will be constructed in accordance with ODOT CMS Item 603.05 Method B. The maximum cover over the culvert at this location is approximately 44 feet. The inlet and outlet of the culvert will be supported by headwalls flush with the face of the pipe at each end. At the time of preparing this letter no further information was available regarding the culvert.

It should be noted that the results of these evaluations are based upon the findings of three borings (C-73 through C-75) located along the proposed alignment of the culvert. The borings were advanced to depths ranging between 21 and 27.5 feet below the ground surface. Logs of the borings, a plan and profile drawing showing the approximate locations of the borings, a legend of the boring log terminology and general information regarding the drilling procedures are attached. The surveyed ground elevations at the boring locations are reported on the logs.

Exploration Findings

The borings encountered 16 to 22.5 feet of soil overlying shale bedrock. The soil classified mainly as very stiff to hard cohesive soil (A-4a, A-4b, A-6a) and appeared to consist of decomposed bedrock. The underlying shale bedrock was soft to medium hard and weathered and fractured to varying degrees.

Michael D. Weeks, P.E., P.S. August 17, 2007 Page 3

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted,

DLZ OHIO, INC.

Wael Alkasawneh, P.E. Geotechnical Engineer

Bryan Wilson, P.E. Senior Geotechnical Engineer

Encl: As noted.

cc: J. Greg Brown, P.E. (TranSystems Corporation), File

Michael D. Weeks, P.E., P.S. August 17, 2007 Page 2

Bearing Capacity Evaluation

The preliminary plans indicate that the invert elevations at the inlet and outlet of the proposed culvert are 761.05 and 731.83, respectively. The bottoms of the headwall footings were assumed to be 4 feet below the invert elevations to place them below the frost zone and prevent scour of the headwall (Ohio BDM Section 200). Based on the results of the borings, footings at this depth will bear in very stiff to hard cohesive soil/decomposed shale. Footings bearing in this material may be designed based on allowable bearing capacity of up to 6,500 pounds per square foot (psf).

Settlement Evaluation

Soil parameters for use in the settlement calculations were estimated using correlations with moisture content and Atterberg limits. Settlement below the centerline of the embankment was evaluated using the maximum cover of the embankment (44 feet) as the surcharge load and using the soil profile encountered in boring C-74.

The settlement analysis indicated that the soil below the embankment will yield a total settlement of 3.8 inches. The analysis indicated that 80% of the consolidation settlement (3.0 inches) will occur within four months after application of the embankment load while the time required to achieve the total consolidation settlement (3.8 inches) will be approximately 20 months. Secondary compression of the foundation soils beneath the embankment is estimated to produce approximately 1.0 inch of additional settlement over a period of a few years after construction.

Settlement at the ends of the culvert due to the embankment loading is expected to be insignificant. Based on the preceding information, and including the secondary consolidation estimate, differential settlement between the center of the embankment and the inlet and outlet of the culvert is expected to be approximately 4.8 inches. The settlement analyses are attached.

Michael D. Weeks, P.E., P.S. August 17, 2007 Page 3

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted,

DLZ OHIO, INC.

Wael Alkasawneh, P.E. Geotechnical Engineer

_a ren

Bryan Wilson, P.E. Senior Geotechnical Engineer

Encl: As noted.

cc: J. Greg Brown, P.E. (TranSystems Corporation), File

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a soils engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Dept\Geotech\Misc\Legends\Geninfo.eng

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
 - Soil Description

4.

5.

6.

9.

a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot Standard
Terms	Penetration
Very Loose	0-4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Cohesive Soils - Consistency

Term	Unconfined Compression tons/sq.ft.	Blows/Foot Standard Penetration	Hand <u>Manipulation</u>
Very Soft less th	an 0.25	below 2	Easily penetrated by fist
Soft	0.25 - 0.50	2 • 4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.00	4 - 8	Penetrated by thumb w/ moderate effort
Stiff	1.0 - 2.0	8 - 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 - 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

b. Color - If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

c.

Texture is based on the ODOT Classification System. Soil particle size definitions are as follows:

Description	<u>Size</u>	Description	<u>Size</u>
Boulders	Larger than 8"	Sand-Coarse	2.00 mm. to 0.42 mm.
Cobbles	8" to 3"	-Fine	0.42 mm. to 0.074 mm.
Gravel-Coarse	3" to 3/4"	Silt	0.074 mm. to 0.005 mm.
-Fine	3/4" to 2.00" mm.	Clay	Smaller than 0.005 mm.

d.

The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

	e.	Modifiers to main soil desc	riptions are indicated as a percentage by weight of particle sizes.						
		trace - 0 to	10%						
		little - 10 to							
		some - 20 to							
		"and" - 35 to							
	f.	The moisture content of co	hesive soils (silts and clays) is expressed relative to plastic properties.						
		Term	Relative Moisture or Appearance						
		Dry	Powdery						
		Damp	Moisture content slightly below plastic limit						
		Moist	Moisture content above plastic limit, but below liquid limit						
		Wet	Moisture content above liquid limit						
		49EI							
	g.	Moisture content of cohesi	ionless soils (sands and gravels) is described as follows:						
		<u>Term</u>	Relative Moisture or Appearance						
		Dry	No moisture present						
		Damp	Internal moisture, but none to little surface moisture						
		Moist	Free water on surface						
		Wet	Voids filled with free water						
•									
10.	Rock ha	rdness and rock quality des							
	а.	The following terms are us	ed to describe the relative hardness of the bedrock.						
	-	Term	Description						
		Very Soft	Difficult to indent with thumb nails; resembles hard soil but has rock structure						
		Soft	Resists indentation with thumb nail but can be abraded and pierced to a shallow depth by a pencil point.						
		Medium Hard	Resists pencil point, but can be scratched with a knife blade.						
		Hard	Can be deformed or broken by light to moderate hammer blows.						
		Very Hard	Can be broken only by heavy blows, and in some rocks, by repeated hammer blows.						
	b.		RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by f all core pieces which are at least four inches long, and then dividing this sum by the total length of the core						
11.	Gradatio	on - when tests are performed	d, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).						
12.		Vhen a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture ontent is indicated graphically.							
13.	The star	idard penetration (N) value in	n blows per foot is indicated graphically.						
S:\Dept\	Geotech\L	egends Manuals Misc\Leger	nds\Legeng.odt						

ľ

.

wooded crea

HYDRAULIC DE	SIGN	DATA
DRAINAGE AREA	•	Ac.
Q	-	cfs
0.00	-	cfs
V	•	f ps
V 100	-	í ps
H₩	-	
HW 100	-	

.

HORIZONTAL

CTS

PROFILE

AND

PLAN	NOT FOR CONSTRUCTION									
E.										
	840						-			
	800									
8	760									
SCI-823-0.00	720									
CI-82						-				
s(
\sim	· · · · · · · · · · · · · · · · · · ·							1		

Clie	<i>nt:</i> T	ranSy	stems	Inc.				Project: SCI-823-0.00								lob No.	0121	-3070.	03
		F: Bo					ocation: Sta	1. 823+86.8, 109.2 ft. RT of SR 823 CL Date Drilled: 10	/03										
					Sam No		Hand	WATER OBSERVATIONS: Water seepage at: Not reported		Gf	RAD	<u>атіс</u> 	<u>א</u> 	_					
			6"	(in)		e.	Penetro- meter	Water level at completion: 11.0'	ate	ы	σ	-							N (N)
Dej (fi	pth #}	Elev. (ft)	Blows per 6"	very		Press / Core	(tsf)		% Aggregal	Sand	Sand	Sand	Sit	ay	PL		ure Con	L	- • L
		761.0	Blow	Recovery	Drive	Pres.	(10)	DESCRIPTION	% A(% C.	% M.	ж. Г.	% Si	% CI	10		er foot 03		0
0.	.3 <u></u>	-760.7-	-					Topsoil - 4"							$\begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$		1 1 1 1	1 1 1 1 1 1 1	
	_		3 2 2	_16	1		-	Soft brown SANDY SILT (A-4a), little clay, little gravel; damp.	13	23		8	43	13	Q	•			
— 3.	.0	-758.0-	3					Very stiff to hard brown and gray SILT AND CLAY (A-6a), little	1								$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\begin{array}{c} 1 1 2 2 \\ 1 1 2 3 1 \\ 1 1 2 3 1 \\ 1 1 2 3 1 \end{array}$	
	5 —		11	18	2			fine to coarse sand, trace gravel; damp to moist. (Decomposed SHALE).							1171		1 1 4 4 1		
	I I		4 8 10	18	3		4.25		5	12		6	48	29 .	+ 1 4 + 1 1 1 1 1		<u></u>		
	1														1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 7	9			
			⁴ 8 13	17	4		4.5+	-							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5		
	-		6													1 1 1 3 1 2 1 2 1 1 1 1 1 1 1 1			
	1		10 14	18	5		4.5+									1111	Ô,		
	-		8 36 50/5	40	6		4.5+									$\begin{array}{c} 1 0 1 1 \\ 1 0 1 1 \\ 1 1 1 1 1 \end{array}$	••••		· · · · ·
	15 —		50/5	18)) 1 	4 4 7 1 4 4 7 1 4 4 7 1	50+(
16	5.0	-745.0-				-		Soft brown SHALE; very fine grained, highly weathered, very thinly bedded, moderately fractured.			3) 	1 1 1 1 1 1 1 4 1 4 7 4 1 4 7 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	_		Core	Rec	RQD 80%	R.1		Thinky bedded, moderately hactored.								$\begin{array}{c}1&1&1&1\\1&1&1&1\\1&1&1&1\end{array}$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
2	- 20		60"	60"	80%			@ 18.7'. gray.								· · · · ·	1 + 1 + 1 + 1 1 + 1 + 1 + 1 2 + 1 + 1 + 1		
		-740.0-													• • • •				
21	-							Bottom of Boring - 21.0'											
	-				i l) 	111) 1111 1111	1111 1111 1111		
2	 25	ļ																	
2	-														11111	1111	1 1 1 1	6 4 1 5 4 4 1 5	
	-														1) 1 1 7	1.4.1.4		5 1 7 5 7 1 1 1	
	-	1									1				4 1 4 4 4 1 4 7 7 6 6 6	$\begin{array}{c}1&4&1&4\\1&4&1&4\\1&1&1&1\end{array}$			
	30.														$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \end{array}$	1111			

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

Client: T							Project: SCI-823-0.00							Job I	Vo. 012	1-3070	.03
LOG O) <u>F:</u> Bo	ring	<u>C-74</u>	Sam		ocation: Sta	a. 823+68.5, 13.0 ft. LT of SR 823 CL Date Drilled: 11 WATER)/03 			ATIC		-1				
Depth (ft)	Elev. (ft) 745.3	Blows per 6"	Recovery (in)	Drive		Hand Penetro- meter (tsf)	OBSERVATIONS: Water seepage at: Not reported Water level at completion: Not reported DESCRIPTION	% Aggregate		M. Sand	F. Sand	% Silt	% Clay	STANDAF Natural Mo PL ⊢ Blow 10	isture Co	ontent, %	- •
-	-745.0-	2 3	15	1		2.5	Topsoil - 3" Very stiff brown SILT (A-4b), little fine to coarse sand, little gravel; damp.	12	10		4	51	23		, , , , , , , , , , , , , , , , , , ,	1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
—3.0— - 5 —	-742.3-	2 8 12	18	2		_	Very stiff brown SANDY SILT (A-4a), little clay, little gravel; damp. (Decomposed SANDSTONE).										
-		3 13 23	3 18	3				16	21		10	37	16	$\begin{array}{c} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 3 & 1 & 3 & 3 \\ 3 & 1 & 3 & 1 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \\ 4 & 1 & 1 \end{array} $		< A	
	-734.8-	7 10 11	18	4										1 1 1 4 7 1 1 4 1 4 7 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R		
1 		8 11 15	5 18	5		4.5+	Very stiff to hard brown and gray SANDY SILT (A-4a), some clay, little gravel; damp.(Weathered to decomposed SHALE).		:						þ	ι ιι ι ι ιι ι ι ιι ι ι ιι ι ι ιι ι ι ι ι ι ι ι ι ι ι ι ι	
 15		5 8 1(6		3.5		17	7		5	43	28				
-	-	5 7 1	18	7		4.5+											
20		/ 17 31		8		4.5+								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I		
	722.8-	17 50/4	14	9										4 4 4 1 1 1 7 1 1 1 1 1 1			50-
- 25		Core 60"	Rec 55"	RQD 51%	R-1		Soft to medium hard gray SHALE; slightly weathered, very thinl bedded, slightly fractured.										r r I F F F
	717.8-						Bottom of Boring - 27.5'							3 1 6 1 9 6 3 4 6 1 2 1 1 7 1 6 1 2 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
30														4 1 4 1 4 1 4 1 1 4 1 1 1 1 1	1 4 4 4 4	1 1 1 1 1	

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

Clie	ent: T	ranSy	stems	, Inc.		_		Project: SCI-823-0.00				_			Job No. 0121-3070.03
LC)G 0	F: Bo	ring	C-75		L	ocation: Sta	a. 822+97.9, 179.0 ft. LT of SR 823 CL Date Drilled: 10	0/04						
					Sam, No		Hand	WATER OBSERVATIONS: Water seepage at: Not reported	\vdash	GF	RAD				
			.e.	(ii)		Cora	Penetro- meter	Water level at completion: 13.3'	ate	7	ъ	_			STANDARD PENETRATION (N)
	pth	Elev.	s per	very		ŏ `			beut	Sand	Sand	Sand		≥	Natural Moisture Content, % - ● PL H
	//) ^	(ft) 732.0	Blows	Recovery	Drive	Press / ((tsf)	DESCRIPTION	% Aggregate	% C.	% M.	% F.	% Sitt	% Cla	Blows per foot - () 10 20 30 40
	.3—	-731.7-						Topsoil - 4"							
			3 6	.15	1			Medium dense brown and gray SANDY SILT (A-4a), some gravel, little gravel; damp. (Decomposed SHALE)	25	17		12	34	12	• Non-Plastic
	5		8 12 12	_18_	2										
-	-	-726.0-	6 8		3		4.5+	Stiff to very stiff brown and gray SANDY SILT (A-4a), some							$\mathcal{F}_{\mathcal{F}}$
	1		13 3	- 10				clay, trace to little gravel; damp. (Decomposed SHALE)							
	10 —		6 11	18	4		3.75		10	10	-	ĺ	49	24	
	-		3 7 12	17	5		3.75								à
	- 15 —		3 7 31	18	6										
			25 50/3	12	7			@ 17.5'-17.8', clay seam.							50+
10:14 AM]	/.5 20	-714.5-	Core 60"	Rec 58"	RQD 56%	R-1		Soft to medium hard gray SHALE; very fine grained, slightly weathered, very thinly bedded, slightly fractured. @ 18.5'-18.7', clay seam.							
1/20/2001	 2.5	-709.5-			ļ										
- 0 - 0	-							Bottom of Boring - 22.5'							
FILE: 0121-3070	25							· · ·							1 1
FILE: (-														1 1
	- 30														1 1 1 3 3 3 1

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

CLIENT	TranSystems Inc.	
PROJECT	Portsmouth Bypass	
SUBJECT	Culvert at Station 823+45	
	Bearing Capacity Analysis	

JOB NUMBER	01	21-3070)-03
SHEET NO.	1	OF	1
COMP. BY	BEW	DATE	8/17/2007
CHECKED BY		DATE	

Base analysis on results of boring C-76 and C-78.

From hand penetrometer measurements at and below footing elevation:

qu = 4 tsf c = 4000 psfFactor of Safety (FS) = 3 (ODOT BDM 202.2.3.1)

For cohesive foundation soil:

 $\frac{\text{Meyerhof's Method}}{q_u = S_c^* c^* N_c^+ q^* N_q} \qquad q = 1$

N_o q=γ^{*}D Can be neglecte

Can be neglected since footing depth is less than 5 ft

Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$

q_a=q_u/FS= 6853.3 psf

Use q_a < 6853 psf

WDLZ

Client TranSystems Inc. Project Portsmouth Bypass Item Culvert at STA, 823+45

JOB NUMBER	0121-3070.03	
SHEET NO.	1	OF
COMP. BY	WMA	DATE
CHECKED BY	BEW	DATE

4 8/10/07 8/17/07

Calculations Data

Boring	Sample	*	PL	ԼԼ	Pl	Cc'	Cr2	e,3
C-73	1	16	20	23	3	0.04	0.029	0.9895
C-73	3	18	18	29	11	0.15	0.037	0.9681
C-74	1	16	19	24	5	0.07	0.031	0.9825
C-74	3	12	19	28	9	0.12	0.038	0.9449
C-74	6	18	19	29	10	0.14	0.037	0.9710
C-75	4	18	21	30	9	0.12	0.038	0.9739
	_							
······							·	NG 21
					Average	0.11	0.035	0.9717
					Maximum	0.15	0.038	.0,9895
Cc=P1/74								
)Cr=0.000463xLLxGs								
Based on CR below								

Boring	Sample	LL	C, (ft²/day)	C _v *(ft ^z /sec)
C-73	1	23	× *1·21	1,40E-05
C-73	3	29	£ 10.63 U	7.24E-06
C-74	1	24	a \$1.07. ±	1.24E-05
C-74	3	28	20.69	8.01E-06
C-74	6	29	70.63	7.24E-06
C-75	4	30	4×0.57	6.58E-06
			1 (C. 19)	30 - See - S
			7 S. H. G.	X
		Minmum	0.57	6.58E-06
		Average	0.80	9.26E-06
		Maximum	1.21	1.40E-05

"Cv(ft2/day) = 9343.5"LL^(-2.8542) (Kulhawy and Mayne- 1990)

Typical Values	
Source: Holtz and Kovacs (198	i1)/ Terzaghi, F
Mesri (1995)	
Soil	C°C°
Organic Silts	0.035-0.06
Amorphous and Fibrous Peat	0.035-0.085
Organic Clays and Silts	0.04-0.06
Granular Soils	0.01-0.03
Shale and mudstones	0.02-0.04
Silty Clay	0.03-0.06
Peal	0.05-0.07

Boring	Sample	w	PL.	LL J	Pl	u	Consolidation*
C-73	1	16	20	23	3	-1,33	Overconsolidated
C-73	3	18	18	29	- 11	0.00	Overconsolidated
C-74	1	16	19	24	5	-0.60	Overconsolidated
C-74	3	12	19	28	9	-0.78	Overconsolidated
C-74	6	18	19	29	10	-0,10	Overconsolidated
C-75	4	18	21	30	9	-0.33	Overconsolidated
	_	1					

.

*Overconsolidated when LI<0.7

Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.11)

.

w%	CR=(C_/1+e_)	
9.983	2.389	
11.785	2.547	
14.487	3.016	
17.099	3.825	
19.816	4.892	
25.352	6.931	
28.328	8.079	
34.174	10.369	· ·
42,400	13.490	· ·
51.139	16.388	
79.829	23.326	·
152.740	33,469	
341.288	46.114	
501.494	52.174	

Correlation: CR=-4E-09w^4 + 5E-06w^3 - 0.0021w^2 + 0.4695w - 3.1337 R²=0.9992

	Client	TranSystem	s, Inc.	JOB	NUMBER	0121-30	70.03		
	Project	SCI-823-0.0	0	SHE	ET NO.		2	OF	4
	ltem	Culvert at ST	FA. 823+45	СОМ	COMP. BY		WMA		08/10/0
	Based o	n C-74		CHE	CKED BY	BEW		DATE	08/17
	OFTI I								
	SEITL				•	ft			
Embankment Informaiton:	_		Groundwater Table:	D=	11.0				
		4	Embankment Height		44	ft		6 2806	
			Fill Unit Weight:	$\gamma_{emb} =$	120	pcf	q =	5,280 psf	
		9	Width of Slope:	a =	96				
		``* *	Top half-width of Er		55				
	-/°'/		Distance from CL:	x =	0			-	
			Output Range:	z =	0	to	30	ft	
	V		*See Data output Al	tached					
	S(ۍ م	$\mathbf{z}) := \left(\frac{\mathbf{q}}{\mathbf{x} \cdot \mathbf{s}}\right) (\mathbf{s} \cdot (\mathbf{\alpha}(\mathbf{z}) +$	$\beta(z) + c$	ւ'(z)) + է	•(α(z) ·	+ œ'(z))	+ x ·(α(z) -	α'(z)))
- +			(,, ,,						
$\beta(z) := \operatorname{atan}\left[\frac{(b-z)}{z}\right] + \operatorname{atan}\left[\frac{(b+z)}{z}\right]$	α'(z)	$= \operatorname{atan} \left[\frac{(a + a)}{(a + a)} \right]$	$\left[\frac{b-x}{b-x}\right] = \operatorname{atan}\left[\frac{(b-x)}{b-x}\right]$	α(z)) ^{:=} atan	<u>(a+1</u>	<u>b + x)</u>	- atan (b	<u>+ x)</u>
$p(z) = \operatorname{atan}\left[\frac{z}{z}\right] + \operatorname{atan}\left[\frac{z}{z}\right]$		ĺ	zļĮzļ			1 :	z j	l	ΖJ
Referen	ice: US Army Co	orps of Engine	eers EM 1110-1-1904 "Settle	ment Analy				· ·	
					Co	hesionl	ess		
Soil Properties: Settlement is cald) . 			Soil		Cohesive So	
No. Bot. of Layer Soil Type	γ_{soil} (pcf)	σ_{c} (psf)	σ'_{o} (psf) $\Delta\sigma z$ (ps	t) σ _f	(psf)	C'	Cr	Cc	eo
1 10.0 ft Sandy Silt/Silt	120	6,000	600 5,280	5,8	380	0.0	0.	04 0.11	0.972
1 22.5 ft and Clay	120	7,000	1,622 5,267	6,8	89	0.0	0.	04 0.11	0.972
2 0.0	0	0				0.0	0.	00 0.00	0.000
4 0.0	0	0	· · · · · · · · · · · · · · · · · · ·						
4 0.0 5 0.0	0	0		<u></u>					
5 0.0	0	0						······	
5 0.0 6 0.0	0 0	0 0	· · · · · · · · · · · · · · · · · · ·						······
5 0.0 6 0.0 7 0.0	0 0 0	0 0 0							
5 0.0 6 0.0 7 0.0 8 0.0	0 0 0 0	0 0 0 0							· · · · · · · · · · · · · · · · · · ·
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0	0 0 0 0 0	0 0 0 0 0	Reference: Geotechnical Eng	•	-			1999	
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	0 0 0 0 0		Overconsolidated Soil	s - Case	l(σ'₀<σ			1999	······
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	0 0 0 0 0		Overconsolidated Soil	s - Case	l(σ'₀<σ			1999	
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 0.215	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ull} = \sum \frac{C_r}{1 + e_0} H$ k	s - Case $\int \frac{\sigma'_f}{\sigma'_0}$	(σ'₀<σ	'.) Eqr	1:11.24		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	0 0 0 0 0 0		Overconsolidated Soil $\left(\delta_c\right)_{ult} = \sum \frac{C_r}{1+e_0} H$ is Overconsolidated Soil	s - Case $\left[\frac{\sigma'_f}{\sigma'_0}\right]$ s - Case	Ι (σ'₀<σ ΙΙ (σ'₀<σ	';) Eqr	11.24 Eqn:11		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 0.215	0 0 0 0 0 0		Overconsolidated Soil $\left(\delta_c\right)_{ult} = \sum \frac{C_r}{1+e_0} H$ is Overconsolidated Soil	s - Case $\left[\frac{\sigma'_f}{\sigma'_0}\right]$ s - Case	Ι (σ'₀<σ ΙΙ (σ'₀<σ	';) Eqr	11.24 Eqn:11		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 2 0.139 ft 3 4	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log O$ Overconsolidated Soil $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1 + e_0} H \log O \right]$	s - Case $pg\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ s - Case $\left(\frac{\sigma'_{c}}{\sigma'_{0}}\right) + \frac{1}{1}$	$ (\sigma'_0 < \sigma) $	'c) Eqr $\sigma'_{c} < 0$ c) $\operatorname{pg}\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	Eqn:11]		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 0.215	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log Overconsolidated Soil (\delta_c)_{ult} = \sum \left[\frac{C_r}{1+e_0} H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidate$	s - Case $pg\left(\frac{\sigma'_f}{\sigma'_0}\right)$ s - Case $\left(\frac{\sigma'_c}{\sigma'_0}\right) + \frac{1}{10000000000000000000000000000000000$	$ (\sigma'_0 < \sigma) $	'c) Eqr $\sigma'_{c} < 0$ c) $\operatorname{pg}\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	Eqn:11]		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 2 0.139 ft 3 4	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log Overconsolidated Soil (\delta_c)_{ult} = \sum \left[\frac{C_r}{1+e_0} H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidate$	s - Case $pg\left(\frac{\sigma'_f}{\sigma'_0}\right)$ s - Case $\left(\frac{\sigma'_c}{\sigma'_0}\right) + \frac{1}{10000000000000000000000000000000000$	$ (\sigma'_0 < \sigma) $	'c) Eqr $\sigma'_{c} < 0$ c) $\operatorname{pg}\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	Eqn:11]		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 2 0.139 ft 3 4	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log O$ Overconsolidated Soil $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1 + e_0} H \log O \right]$	s - Case $pg\left(\frac{\sigma'_f}{\sigma'_0}\right)$ s - Case $\left(\frac{\sigma'_c}{\sigma'_0}\right) + \frac{1}{10000000000000000000000000000000000$	$ (\sigma'_0 < \sigma) $	'c) Eqr $\sigma'_{c} < 0$ c) $\operatorname{pg}\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	Eqn:11]		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 2 0.139 ft 3 4	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log Overconsolidated Soil (\delta_c)_{ult} = \sum \left[\frac{C_r}{1+e_0} H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidate$	s - Case $pg\left(\frac{\sigma'_f}{\sigma'_0}\right)$ s - Case $\left(\frac{\sigma'_c}{\sigma'_0}\right) + \frac{1}{10000000000000000000000000000000000$	$ (\sigma'_0 < \sigma) $	'c) Eqr $\sigma'_{c} < 0$ c) $\operatorname{pg}\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	Eqn:11]		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 2 0.139 ft 3 4	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log Overconsolidated Soil (\delta_c)_{ult} = \sum \left[\frac{C_r}{1+e_0} H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidated Soil H \log Overconsolidate$	s - Case $g\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ s - Case $\left(\frac{\sigma'_{c}}{\sigma'_{0}}\right) + \frac{1}{1}$ d Soils ($g\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$	$ (\sigma'_0 < \sigma) $	'c) Eqr $\sigma'_{c} < 0$ c) $\operatorname{pg}\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	Eqn:11]		
5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 Total Settlement 1 0.176 ft 2 0.139 ft 0.315 ft 3 4 5 3.8 in 6 7 8 3.8 in	0 0 0 0 0 0		Overconsolidated Soil $(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log O$ Overconsolidated Soil $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1 + e_0} H \log O$ Normally Consolidate $(\delta_c)_{ult} = \sum \frac{C_c}{1 + e_0} H \log O$	s - Case $g\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ s - Case $\left(\frac{\sigma'_{c}}{\sigma'_{0}}\right) + \frac{1}{1}$ d Soils (i) $g\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ $g(\sigma'_{0})$	$ (\sigma'_0 < \sigma) $	'c) Eqr $\sigma'_{c} < 0$ c) $\operatorname{pg}\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	Eqn:11]		

Client Project Item	Client	TranSystems Inc.	JOB NUMBER	0121-3007.03		
	Project	Portsmouth Bypass	SHEET NO.	4	OF	4
	ltem	Culvert at STA, 823+45	COMP. BY	WMA	DATE	08/10/07
	Based on	boring C-74	CHECKED BY	BEW	DATE	08/17/07

SECONDARY SETTLEMENT ANALYSIS - EMBANKMENT

Thickness (H) 22.5 ft $c_{s} = 638E^{4}06; \quad n^{2}/s$ T= 2.71 (assuming U=0.999)

- $t_{p^{m}}$ 1.66 yrs= 605 days
- tpa 1.00 yrs= 005 da

Time to end of primary consolidation ($\beta = 1.66$ yrs

No.	Soil	H(ft)	w(%)	C,	S(inch)
1	Silt and Clay	22.5	16	0.0037	1.0
2					
3					

Total Secondary Settlement = 1.0

0 inches

Secondary Settlement*

 $(\delta_{secondar}) = C_{\alpha}H$

$$t_p = \frac{T.H^2}{c_u} Assume \ U= 0.999$$

* Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.14)