

Report of:

Subsurface Exploration Bridge and MSE Retaining Walls US 52 Ramp A Over Ohio River Road (To Northbound SR 823) SCI-823-0.00 Portsmouth Bypass (PID 77366) Scioto County, Ohio

DLZ Ohio, Inc. 6121 Huntley Road Columbus, OH 43229 Phone: (614) 888-0040

DLZ Job No. 0121-3070.03 June 1, 2007

Fax: (614) 436-0161

Prepared for: **TranSystems Corporation** 5747 Perimeter Drive, Suite 240 Dublin, Ohio 43017

REPORT

OF

SUBSURFACE EXPLORATION

FOR

BRIDGE AND MSE RETAINING WALLS

US 52 RAMP A OVER OHIO RIVER ROAD (TO NORTHBOUND SR 823)

PROJECT SCI-823-0.00 PORTSMOUTH BYPASS (PID 77366)

SCIOTO COUNTY, OHIO

For:

TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, Ohio 43017

DLZ Job. No. 0121-3070.03

June 1, 2007

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
2.0	GENERAL PROJECT INFORMATION	1
3.0	FIELD EXPLORATION	2
4.0	FINDINGS. 4.1 Geology of the Site. 4.2 Subsurface Conditions	2 3 3 3
5.0	 CONCLUSIONS AND RECOMMENDATIONS 5.1 Mechanically Stabilized Earth (MSE) Retaining Wall Recommendations 5.1.1 MSE Walls: General Information 5.1.2 MSE Wall Evaluations and Recommendations-Rear Abutment 5.1.3 MSE Wall Evaluations and Recommendations-Forward Abutment 5.2 Bridge Foundation Recommendations 5.2.1 Rear Abutment 5.2.2 Pier 5.2.2 Pier-Left Foundation 5.2.2 Pier-Right Foundation 5.2.3 Forward Abutment 	4 5 7 8 9 .10 .11 .12 .13 14
	5.4 General Earthwork Recommendations	
6.0	CLOSING REMARKS	

APPENDIX I

Structure Plan and Profile Drawing - 11"x17"

APPENDIX II

General Information – Drilling Procedures and Logs of Borings Legend – Boring Log Terminology Boring Logs – Seven (7) Borings

APPENDIX III

Laboratory Test Results

APPENDIX IV

MSE Wall Global Stability Analysis Results MSE Wall Bearing Capacity and Stability Calculations MSE Wall Settlement Calculations Drilled Shaft – End Bearing and Side Resistance Calculations Drilled Shaft – Laterally Loaded LPile Analysis

REPORT OF SUBSURFACE EXPLORATION FOR BRIDGE AND MSE RETAINING WALLS US 52 RAMP A OVER OHIO RIVER ROAD (TO NORTHBOUND SR 823) PROJECT SCI-823-0.00 PORTSMOUTH BYPASS (PID 77366) SCIOTO COUNTY, OHIO

1.0 INTRODUCTION

This report includes the findings of the subsurface exploration and the engineering evaluation of the foundations and mechanically stabilized earth (MSE) retaining walls for US 52 Ramp A of the Portsmouth bypass project. The findings included in this report pertain to US 52 Ramp A to northbound SR 823 only. The findings of other structure evaluations for the Portsmouth bypass project will be submitted in separate documents.

This project consists in part of constructing a bridge for proposed US 52 Ramp A over Ohio River Road (CR 503). The structure as planned, is a two-span structure using MSE walls to hold back the roadway embankments and contain the abutments.

The purpose of this exploration was to 1) determine the subsurface conditions to the depths of the borings, 2) evaluate the engineering characteristics of the subsurface materials, and 3) provide information to assist in the design of the structure foundations, the MSE walls, and the approach embankments. The exploration presented in this report was performed essentially in accordance with DLZ Ohio, Inc.'s (DLZ) proposal for the project.

The geotechnical engineer has planned and supervised the performance of the geotechnical engineering services, considered the findings, and prepared this report in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are made as to the professional advice included in this report.

2.0 GENERAL PROJECT INFORMATION

Based upon the structure site plan, which is presented in Appendix I, it is assumed that the maximum height of the embankment/MSE wall at the rear and forward abutments will be approximately 27.9 and 34.1 feet, respectively. These heights are based upon the maximum difference between the proposed grade of US 52 Ramp A and the existing grade as per the revised profile for Ramp A, received May 15, 2007. In addition, it is understood that the MSE walls will be placed at approximate stations 39+17 and 41+50 for the rear and forward abutments, respectively.

The analyses and recommendations presented in this report have been made on the basis of the foregoing information. If the proposed locations or structural concept are changed or differ from that assumed, DLZ should be informed of the changes so that recommendations and conclusions presented in this report may be revised as necessary.

3.0 FIELD EXPLORATION

The field exploration consisted of drilling a total of six structure borings for the proposed bridge and MSE walls. Borings B-33 through B-36 were drilled for the currently proposed structure, as indicated on the structure site plan. These borings were drilled between January 26 and February 1, 2007. Borings TR-62 and TR-76 were drilled for a previous design configuration. These borings were drilled between March 18 and 30, 2005. The bedrock encountered in boring TR-66, drilled for Ramp B, was also considered in the analyses of the drilled shaft foundations. The boring logs for all borings are presented in Appendix II. Information concerning the drilling procedures is also presented in Appendix II.

The boring locations were planned and staked in the field by representatives of DLZ. The surveyed locations and ground surface elevations of the borings were determined by representatives of Lockwood, Lanier, Mathias & Noland, Inc. (2LMN). The surveyed locations of the borings are reflected on the structure site plan presented in Appendix I.

4.0 FINDINGS

4.1 Geology of the Site

The area of this structure is characterized by gently to steeply sloping topography rising from of the floodplain of the Ohio River. The project area is located in the Shawnee-Mississippian Plateau of the unglaciated portion of the Appalachian Plateau Physiographic Region. The Shawnee-Mississippian Plateau is characterized by Devonian aged to Pennsylvanian aged rocks and contains residual, colluvial, alluvial, and lacustrine soils.

The genesis of the soils varies across the site. Soils in the floodplain consist primarily of alluvium and alluvial terraces, generally composed of silty clay, coarse sand, gravel, and cobbles. Below approximately elevation 700, the soils on the hillsides are generally lacustrine deposits. Lacustrine soils in this area are commonly known as "Minford Silts" or the Minford Complex. These deposits were formed during the early to middle Pleistocene age when the northward flowing Teays River system was blocked by the southward advance of the Kansan aged ice sheets. As the glaciers advanced, the course of the Teays River was blocked south of Chillicothe and a large lake was formed from the impoundment of the waterways. As a result of the impoundment, vast quantities of sediments were deposited ranging from 10 to 80 feet in thickness, thinning towards the margins. Bedrock within the structure area is primarily sandstone of the Logan Formation of Mississippian age. Bedrock of the Pennsylvanian Breathitt Formation can be found at the top of the slopes to typically above approximately elevation 770.

4.2 Subsurface Conditions

The following sections present the generalized subsurface conditions encountered by the borings. For more detailed information, refer to the boring logs presented in Appendix II. Laboratory test results are presented on the boring logs and also in Appendix III.

4.2.1 Soil Conditions

The results of this investigation indicated that soil conditions at the site were somewhat uniform. In general, the subsoil stratigraphy consisted of shallow surficial materials consisting of topsoil underlain by native cohesive and granular soil deposits and sandstone.

Borings B-33 and B-36 were drilled for the rear and forward abutments, respectively, of the approved structure configuration. Similarly, borings B-34 and B-35 were drilled for the pier of the currently proposed structure. Boring TR-76 was also considered in the evaluation of the rear abutment location, while boring TR-62 was considered in the evaluation of the forward abutment location.

All borings, except boring TR-62, encountered 2 to 5 inches of topsoil underlain by natural soils. Boring TR-62 encountered 3 inches of aggregate base at the ground surface. Borings B-33, B-34, TR-62, and TR-76 encountered natural cohesive soil deposits below the surface material, while borings B-35 and B-36 encountered natural granular soil deposits. The natural cohesive deposits consisted of hard Silt and Clay (A-6a), stiff to hard Sandy Silt (A-4a), and very stiff Silt (A-4b), while the granular soil deposits consisted mainly of medium dense to very dense Sandy Silt (A-4a), and very dense Gravel with Sand and Silt (A-2-4). The native soil deposits extended to depths ranging between approximately 3.0 and 13.0 feet below the ground surface, where bedrock was encountered.

4.2.2 Bedrock Conditions

In the area of the proposed structure, bedrock was encountered in all borings. The bedrock consisted of soft to hard, slightly to highly weathered, argillaceous sandstone. Severely weathered, argillaceous sandstone was encountered in borings B-33, B-34, B-35, and TR-62 above the competent sandstone. The amount of rock recovered in each core run varied between 92 and 100 percent. The rock quality designation (RQD) of the bedrock ranged between 60 and 86 percent with an average of 73 percent indicating "fair" to "good" rock.

Unconfined compressive strength of tested rock cores ranged between 5,450 and 11,036 pounds per square inch (psi). The tested rock cores were obtained at depths between 9.3 feet and 21.3 feet below the ground surface. A summary of the unconfined compressive strength of the tested cores is shown in Table 1. Anticipating the possibility that the foundations will need to be designed for

lateral loading, the elastic modulus of selected cores was also measured. The results of these tests are presented in Appendix III.

Boring	Depth (ft)	Unit Weight (pcf)	Unconfined Compressive Strength (psi)
B-33	20.8-21.3	149.7	9,284
B-34	20.1-20.7	155.4	5,450
B-35	8.4-8.9	157.2	10,892
B-36	9.6-10.0	158.3	9,260
TR-62	9.3-9.7	154.4	10,794
TR-76	19.6-20.0	140.2	11,036

Table 1-Rock Core Test Results

4.2.3 Groundwater Conditions

Seepage was not observed in any of the borings drilled for this structure. There were no measurable water levels in the borings prior to rock coring. Measurable water levels were present in all borings upon the completion of coring between approximate depths of 1.2 and 10.5 feet. Final water levels include water that was used during rock coring operations. Consequently, any seepage zones that might exist in the rock were masked.

It should be noted that groundwater levels may fluctuate with seasonal variations and following periods of heavy or prolonged precipitation, and therefore, the readings indicated on the boring logs may not be representative of the long-term groundwater level. Long-term monitoring would be needed to obtain a more accurate estimate of the groundwater table elevation.

5.0 CONCLUSIONS AND RECOMMENDATIONS

It is understood through comments from ODOT's Office of Structural Engineering (OSE) that driven steel H-piles were preferred for supporting the abutments. Prebored CIP piles and drilled shafts could also be considered for the support of the abutments. Spread footings, prebored CIP piles, driven piles and drilled shafts could be considered for supporting the pier. Additionally, it is understood that MSE walls will be used to contain the abutments and hold back the roadway embankment. Recommendations for the piles, drilled shafts, spread footings, and MSE walls are presented in the following sections.

5.1 Mechanically Stabilized Earth (MSE) Retaining Wall Recommendations

It is understood that MSE walls will be used to construct the approach embankments and contain the abutments. Recommendations for the MSE wall are presented in the following sections. Based upon subsurface conditions, it was assumed that deep foundations would be used for the stability analyses and settlement calculations for the proposed MSE walls.

5.1.1 MSE Walls: General Information

An MSE retaining wall essentially consists of good quality backfill material with layers of metal or plastic reinforcing that are attached to concrete facing panels. The MSE wall and associated backfill should be constructed in accordance with the specifications of the manufacturer of the MSE wall.

A global stability analysis and bearing capacity analysis were performed for the MSE walls at this bridge location in accordance with ODOT and AASHTO guidelines. The MSE walls were also analyzed for sliding and overturning.

Calculations for bearing capacity, sliding, and overturning as well as the results of the global stability and settlement analyses are presented in Appendix IV. Other internal stability analyses (i.e. strap design) are required for the design of an MSE wall, but are considered outside the scope of this report. The parameters required to perform the stability analyses are presented in Table 2. In accordance with ODOT guidelines, a unit weight of 120 pounds per cubic foot (pcf) and a friction angle of 34 degrees were selected for the backfill material in the reinforced zone. Similarly, the fill material used to construct the roadway embankments is assumed to have a unit weight of 120 pcf and a friction angle of 30 degrees. If the embankment fill material or backfill material for the reinforcing zone has properties significantly different from these values, DLZ should be informed so that the analyses may be revised as necessary.

		Unit	Strength Parameters			
Zone	Soil Type	Weight	Undrained		Drained	
		(pcf)		ø	c'	φ'
Reinforced Fill	Compacted Granular Fill	120	0	34	0	34
Retained Soil	Compacted Embankment Fill	120	0	30	0	30
Foundation Soil (Rear Abutment) (Boring B-33)	Stiff to Hard Sandy Silt (A-4a)	120	1750	0	0	29
Foundation Soil (Assumes Undercut) Bearing on Bedrock	Compacted Granular Fill	120	0	34*	0	34*

Table 2- Soil Parameters Used in The MSE Wall Stability Analyses

*Sliding analyses for MSE walls on compacted granular fill bearing on Rock use φ '=34°, otherwise use friction angle for compacted granular fill or existing soil below undercut, whichever is less.

5.1.2 MSE Wall Evaluations and Recommendations – Rear Abutment

The rear abutment was considered more critical at this structure due to the 11.0foot thick soil layer at this location. In contrast, competent bedrock was encountered within 3.0 feet of the existing ground surface at the forward abutment. An embankment height of 27.9 feet, as shown on the structure site plan, was assumed for the analyses of the rear abutment MSE wall. Including the additional embedment depth to the top of the leveling pad, a total wall height of 30.9 feet was assumed for the analyses. Additionally, the soil profile and properties encountered by boring B-33 were assumed the analyses of the rear abutment MSE wall.

Boring B-33 encountered stiff Sandy Silt (A-4a) to an approximate depth of 8.0 feet below the ground surface. Below this layer, very dense Gravel with Sand and Silt (A-2-4), and severely weathered sandstone was encountered to an approximate depth of 14.5 feet below the ground surface, at the top of cored bedrock.

Initially, analyses were undertaken to ascertain the global stability, bearing capacity and stability (sliding and overturning) of the MSE walls bearing on the existing soils. The results of the analyses indicated that the factors of safety for global stability, sliding, overturning, and drained bearing capacity were adequate. However, bearing capacity calculations indicated that the factor of safety for the undrained bearing capacity is 2.3, which is less than the recommended minimum value of 2.5.

Additional analyses indicated that an adequate factor of safety can be achieved if some of the some of the existing foundation soils are removed and replaced with compacted granular fill. Consequently, it is recommended that the existing foundations soils be overexcavated to an approximate depth of 4.3 feet below the bottom of the proposed leveling pad, corresponding to an approximate elevation of 550.4 (based on boring B-33). The compacted granular fill below the leveling pad should conform to ODOT Supplemental Specification 840. The limits of the "remove and replace" area should extend beyond the edge of the MSE wall/select granular footprint by a distance equal to the depth of the aggregate base.

For stability, sliding calculations have indicated that a minimum reinforcement length of 0.7 times the full height (H+D) or 21.6 feet is required for stability of the proposed MSE wall at the rear abutment location.

The total maximum settlement (without overexcavation) at the face of the proposed rear abutment MSE wall was estimated to be approximately 4 inches at the centerline of the ramp. Settlement was calculated using the computer program EMBANK, using the "end of fill" option to model the non-continuous embankment loading. Differential settlement at this location was estimated to be approximately 0.7 percent, which is slightly less than the typically cited maximum value. MSE retaining walls are able to withstand relatively large amounts of differential settlement, typically up to 100 millimeters per 10 meters of wall length (1.0 percent). The settlement calculations assumed no overexcavation within the MSE wall footprint area. However, overexcavation is recommended to increase the bearing capacity of the MSE foundation soils.

Therefore, if the recommended overexcavation is preformed, the anticipated settlement of the proposed MSE wall at the rear abutment is assumed to be negligible.

If overexcavation of the soft / compressible soils at the rear abutment is performed as recommended, it will not be necessary to monitor the settlement of the proposed embankments as previously thought.

Table 3 presents the MSE retaining wall parameters and results of analyses at the rear abutment.

Table 3 - MSE Retaining Wall Parameters and Analyses Results (Rear Abutment) Undercut with Compacted Granular Fill Foundation

Retained Soil (New Embankment)
Unit Weight = 120 pcf
Coefficient of Active Earth Pressure $(K_a) = 0.00*$
(Based on $\Phi' = 30^{\circ}$)
Sliding along base of MSE wall
Sliding Coefficient ($\mu \iota$)(0.67) = tan 30°(0.67) = 0.39**
Allowable Bearing Capacity – Undrained Condition (Without overexcavation)
$q_{all} = 3,667 \ psf$
Allowable Bearing Capacity – Drained Condition (With overexcavation)
$q_{all} = 6,853 \text{ psf}$
Global Stability (Without Overexcavation)
Factor of Safety $-$ Undrained Condition $= 2.0$
Factor of Safety – Drained Condition = 1.7
Factor of Safety – Drained Seismic Condition = 1.6
Estimated Settlement of MSE volume
Maximum Total Settlement = 4.0 inches (Without Overexcavation)
Differential Settlement = 0.7% (maximum allowable is 1.0% ODOT BDM 204.6.2.1)
Maximum Total Settlement (With Overexcavation) - Negligible
Full Height of MSE Wall = 30.9 feet (including embedment depth)
Minimum Embedment Depth = 3.0 feet
Minimum Length of Reinforcement for External Stability, 0.7(H+D) = 21.6 feet
*For external stability Ka=0.0, back to back wall analyses. Ref: FHWA-NHI-00-043
**Sliding analyses for MSF walls on compacted granular fill bearing on Rock use (2=34°, otherwise us

**Sliding analyses for MSE walls on compacted granular fill bearing on Rock use $\varphi'=34^\circ$, otherwise use friction angle for compacted granular fill or existing soil below undercut, whichever is less. In this case, use friction angle of soil below undercut, $\varphi'=30^\circ$.

5.1.3 MSE Wall Evaluations and Recommendations – Forward Abutment

An embankment height of 34.1 feet, as shown on the structure site plan, was assumed for the analyses of the forward abutment MSE wall. Including the additional embedment depth to the top of the leveling pad, a total wall height of 37.1 feet was assumed for the analyses. Additionally, the soil profile and properties encountered by boring B-36 were assumed for the analyses of the forward abutment MSE wall.

Boring B-36 encountered Sandy Silt (A-4a) to a depth of 3.0 feet below the ground surface. Below the thin soil layer, slightly weathered sandstone was encountered to a depth of 13.0 feet below the ground surface, upon termination of the boring.

Consequently, at the forward abutment, it is recommended that the MSE wall be constructed on bedrock. It is anticipated that <u>significant variations</u> in the elevation of the top of rock will be encountered along the leveling pad. Significant rock excavation may be required on the right side of the forward abutment to construct the leveling pad and the MSE fill. On the left side of the forward abutment, where the top of rock may be below the bottom of the leveling pad elevation, it is recommended that the existing soils be overexcavated to the top of bedrock and replaced with compacted granular fill to the leveling pad elevation. If the leveling pad is founded on bedrock, no embedment into the rock is required. The compacted granular fill below the leveling pad should conform to ODOT Supplemental Specification 840. The limits of the "remove and replace" area should extend beyond the edge of the MSE wall/select granular footprint by a distance equal to the depth of the aggregate base.

A stability (overturning and sliding) analysis was performed for the proposed MSE wall at the forward abutment location. However, due to the shallow nature of the existing soils at the forward abutment, global stability and settlement analyses were not required, and were assumed to be adequate. For compacted granular fill bearing on bedrock, a friction angle of 34 degrees may be used for internal stability and sliding calculations.

For stability, sliding calculations have indicated that a minimum reinforcement length of 0.7 times the full height (H+D) or 26.0 feet is required for stability of the proposed MSE wall at the forward abutment location.

5.2 Bridge Foundation Recommendations

Table 4 summarizes the site conditions and foundation recommendations. It should be noted that the bedrock surface varies widely across the project area. The approximate bearing elevations presented in Table 4 indicate the elevations at the boring locations only. Variations in the elevation at which competent bedrock is encountered should be anticipated.

Structural Element	Structure / Boring	Existing Ground Surface Elevation (Feet)	Foundation Type	Approximate Bearing Elevation (Feet)	Allowable Bearing Capacity
			HP 12x53-driven	547.4 √	70 tons
Rear	B-33	558.4	CIP Piles-prebored	537.4*	Pile Capacity ⁺⁺
Abutment			Drilled Shafts	537.4*	40 ksf ⁺⁺⁺
	Left / B-34 55	558.6	Spread Footings	542.6	40 ksf
			HP 12x53-driven	544.6	70 tons
			CIP Piles-prebored	537.6*	Pile Capacity ⁺⁺
Pier			Drilled Shaft	525.6**	40 ksf ⁺⁺⁺
			Spread Footings	555.8	40 ksf
	Right / B-35 558.4	Drilled Shafts	536.9**	40 ksf ⁺⁺⁺	
Forward	D 26 559.5		CIP Piles	549.4*	Pile Capacity ⁺⁺
Abutment	B-36	558.5	Drilled Shaft	549.4*	40 ksf ⁺⁺⁺

Table 4-Summary of Foundation Recommendations

* Includes 5-foot socket into competent rock, assumes no significant lateral loads.

** Drilled shaft tip elevation reflects 19-foot rock socket, design based upon lateral loading.

⁺⁺ Pile capacity should conform to ODOT BDM 202.2.3.2

*** End bearing capacity only, refer to section 5.3 for more information

5.2.1 Rear Abutment

From comments by OSE, which are based on preliminary borings, it is understood that driven H-piles are preferred to support the abutments of the proposed structure. However, additional borings drilled for the currently proposed structure indicate that approximately 11.0 feet of overburden is present at the rear abutment location.

For MSE wall stability purposes, an overexcavation of the existing foundation soils is recommended at the rear abutment location. Consequently, if this is performed, the anticipated settlement will be negligible. As a result, no appreciable downdrag forces will be applied to the piles.

If driven H-piles are used at the rear abutment, it is anticipated that HP 12x53 piles would be used and they would be driven to refusal at the top of bedrock, at a depth of approximately 11.0 feet below the existing ground surface. If driven to refusal, the allowable capacity of the pile can be used. Because the piles will be driven to, or very near bedrock, it is recommended that reinforced pile points be used to prevent the piles from being damaged. Piles sleeves should be placed from the bottom of the leveling pad to the pile cap elevation, through the soil reinforced zone of the MSE wall. Piles should be driven through the sleeves after the MSE wall has been constructed up to the pile cap elevation.

As an alternative to driven H-piles, the rear abutment can be supported by cast-inplace (CIP), reinforced concrete piles. The CIP piles would be placed in prebored holes 12 inches larger than the diameter of the pile and 5 feet deep into bedrock. After installing the CIP pile in the prebored hole, grout or cement should be placed in the void area around the pile in the prebored hole prior to constructing the embankment (per OSE). Therefore, a pile sleeve may not be required for the installation of the piles. However, consideration should be given to the use of pile sleeves to mitigate down drag effects from compaction and to protect the pile during the embankment construction. The allowable pile capacity, as per ODOT BDM 202.2.3.2.b, may be utilized in this configuration. Recommended bearing elevations for the CIP pile foundations are presented in Table 4. Excessive lateral loading and uplift is not anticipated to be a concern at this site. However, if these forces are determined to be significant, longer socket lengths may be required.

The contractor should anticipate the need for significant bracing of the prebored CIP piles to provide stability and ensure proper alignment of the abutment piles. The contractor should be prepared to perform hand-compaction near the abutment piles as necessary during the construction of the approach embankment.

Due to the relatively low rigidity of the piles compared to drilled shafts, it is anticipated that the piles will provide low resistance to lateral forces. Therefore, the prebored and socketed CIP pile or driven pile foundation systems may not provide sufficient lateral support if significant lateral loads are present.

As an alternative to pile foundations, drilled shafts could also be considered for the support of the rear abutment. It is recommended that the drilled shafts be socketed a minimum of 5 feet into competent rock. The drilled shafts should be straight (not belled) and may be designed based on an allowable bearing pressure of 40 ksf (20 tsf). Recommended bearing elevations for drilled shaft foundations are presented in Table 4. For additional recommendations on drilled shafts, refer to Section 5.3.

At this time, it is understood that the use of spread footings may not be feasible at the abutment locations due to the proposed bridge configuration. Consequently, recommendations for spread footings at the rear abutment (bearing in MSE fill) are not presented.

5.2.2 Pier

The currently proposed structure utilizes an integral straddle bent pier. The proposed bottom of footing / pile cap is assumed to be approximately elevation 552.78, as shown on the structure site plan presented in Appendix I. Due to the variation in subsurface conditions, recommendations for left and right pier foundations are presented separately.

Borings drilled for the pier encountered weathered bedrock at approximate elevations 545.6 and 556.4 for the left and the right substructures, respectively.

5.2.2.1 Pier – Left Foundation

Boring B-34 was drilled for the currently proposed left pier foundation. Boring B-34 encountered approximately 13.0 feet of Silt (A-4b) and Sandy Silt (A-4a) overlying bedrock. Highly weathered, argillaceous sandstone was encountered in this boring below the soil to a depth of 19.7 feet, where more competent bedrock was encountered.

At the proposed foundation elevation of 552.78, boring B-34 encountered very stiff Sandy Silt. This material would provide considerably less bearing capacity than the underlying bedrock and the footing loads may induce undesirable settlement. Consequently, it is recommended that spread footings, founded on rock be considered to support the left pier. This footing should be founded at or below elevation 542.6, and may be designed based upon an allowable bearing pressure of 40 ksf (20 tsf).

Consideration should be given to the means and extent of the excavation, which would be required for the use of spread footings. An excavation approximately 16.0 feet deep would be required. To avoid the closure of the adjacent Ohio River Road and disruption of existing utilities, significant shoring would be required.

(95)

If the depth of excavation required for the use of spread footings is excessive, pile foundations could be considered for the support of the left pier. Driven HP 12x53,70 ton piles driven to refusal on bedrock could be considered to support the left pier. It is anticipated that piles could be driven to a depth of 14 feet, corresponding to an elevation of 544.6 (as per boring B-34). Depending on the elevation and configuration of the pile cap, driven piles may be of concern at this location. Typically, seven to ten feet of pile embedment is desirable for the lateral support of driven piles.

If sufficient embedment cannot be achieved with driven H-piles piles the use of prebored CIP piles could also be considered. CIP piles could be prebored into bedrock to provide lateral support. Recommended bearing elevations for the CIP pile foundations are presented in Table 4. Additional recommendations for prebored CIP piles are presented in Section 5.2.1. At this time, lateral loading and uplift is not anticipated to be a concern for this type of foundation. However, if these forces are determined to be significant, longer socket lengths may be required.

Given the column arrangement being utilized for the straddle bent pier, a single drilled shaft has been considered for the support of the left pier column. It is understood that preliminary structural designs utilized a 54-inch reinforced concrete column to support the proposed bent. Preliminary lateral and axial service loads have been provided by

TranSystems for the purposes of preliminary design of the laterally loaded drilled shaft. Analyses indicate that a 60-inch diameter drilled shaft could support the 54-inch column and limit deflections at the top of the column to approximately 0.6 inches. Analyses also indicate that a 19-foot deep rock socket will be required to resist the lateral loading. Based upon boring B-34, this corresponds to a bearing elevation of 525.6. The drilled shafts should be straight (not belled) and may utilize an allowable bearing pressure of 40 ksf (20 tsf). If additional capacity is required, the drilled shaft may be designed as a friction-type drilled shaft. Recommendations for the design of friction-type drilled shafts are presented in section 5.3. The minimum 19-foot deep rock socket is required for stability under lateral loading. It may be increased if necessary for axial loading capacity.

If the structural configuration or loading changes, DLZ should be notified so that we may revise our recommendations as required to ensure adequate geotechnical design of the drilled shaft. Calculations for the preliminary design of the drilled shaft are presented in Appendix IV.

5.2.2.2 Pier – Right Foundation

Boring B-35 was drilled for the currently proposed right pier foundation. Boring B-35 encountered only 2.0 feet of Gravel with Sand and Silt (A-2-4) overlying bedrock. Moderately weathered, argillaceous sandstone was encountered below the soil to the completion depth of 12.5 feet.

Based upon the conditions encountered in boring B-35, it is recommended that spread footings, founded on rock be considered to support the right pier. This footing should be founded at or below elevation 555.7, and may be designed based upon an allowable bearing pressure of 40 ksf (20 tsf). It should be noted that competent bedrock was encountered above the proposed bottom of footing, as indicated on the structure site plan in Appendix I. Consequently, excavations approximately 2.9 feet into competent bedrock will be required to construct the footing as shown on the structure site plan.

Given the column arrangement being utilized for the straddle bent pier, a single drilled shaft has been considered for the support of the right pier column. It is understood that preliminary structural designs utilized a 54-inch reinforced concrete column to support the proposed bent. Preliminary lateral and axial service loads have been provided by TranSystems for the purposes of preliminary design of the laterally loaded drilled shaft. Analyses indicate that a 60-inch drilled shaft could support the 54-inch column and limit deflections at the top of the column to approximately 0.5 inches. Analyses also indicate that a 19-foot deep rock socket will be required to resist the lateral loading. Based upon boring B-35, this corresponds to a bearing elevation of 536.9. The drilled shafts

should be straight (not belled) and may utilize an allowable bearing pressure of 40 ksf (20 tsf). If additional capacity is required, the drilled shaft may be designed as a friction-type drilled shaft. Recommendations for the design of friction-type drilled shafts are presented in section 5.3. The minimum 19-foot deep rock socket is required for stability under lateral loading. It may be increased if necessary for axial loading.

If the structural configuration or loading changes, DLZ should be notified so that we may revise our recommendations as required to ensure adequate geotechnical design of the drilled shaft. Calculations for the preliminary design of the drilled shaft are presented in Appendix IV.

5.2.3 Forward Abutment

Boring B-36, drilled for the currently proposed forward abutment, indicates that approximately 3.0 feet of overburden is present at forward abutment location. Below the soil, slightly weathered argillaceous sandstone was encountered to the completion depth of 13.0 feet.

The rear abutment can be supported by cast-in-place (CIP), reinforced concrete piles. Due to the shallow overburden encountered by the boring, the piles should be prebored into bedrock to provide lateral support. The CIP piles would be placed in prebored holes 12 inches larger than the diameter of the pile and 5 feet deep into bedrock. After installing the CIP pile in the prebored hole, grout or cement should be placed in the void area around the pile in the prebored hole prior to constructing the embankment. Therefore, a pile sleeve may not be required for the installation of the piles. However, consideration should be given to the use of pile sleeves to mitigate down drag effects from compaction and to protect the pile during the embankment construction. The allowable pile capacity, as per ODOT BDM 202.2.3.2.b, may be utilized in this configuration. Recommended bearing elevations for the CIP pile foundations are presented in Table 2. Excessive lateral loading and uplift is not anticipated to be a concern at this site. However, if these forces are determined to be significant, longer socket lengths may be required.

The contractor should anticipate the need for significant bracing of the prebored CIP piles to provide stability and ensure proper alignment of the abutment piles. The contractor should be prepared to perform hand-compaction near the abutment piles as necessary during the construction of the approach embankment.

Due to the relatively low rigidity of the piles compared to drilled shafts, it is anticipated that the piles will provide low resistance to lateral forces. Therefore, the prebored and socketed CIP pile foundation system may not provide sufficient lateral support if significant lateral loads are present. As an alternative to a pile foundation, drilled shafts could also be considered for the support of the rear abutment. It is recommended that drilled shafts be socketed a minimum of 5 feet into competent rock. The drilled shafts should be straight (not belled) and may be designed based on an allowable bearing pressure of 40 ksf (20 tsf). Recommended bearing elevations for drilled shaft foundations are presented in Table 4. For additional recommendations on drilled shafts, refer to section 5.3.

At this time, it is understood that the use of spread footings may not be feasible at the abutment locations due to the proposed bridge configuration. Consequently, recommendations for spread footings at the forward abutment (bearing in MSE fill) are not presented.

5.3 General Drilled Shaft Recommendations

For end-bearing drilled shafts, it is recommended that skin friction in the overburden soil/fill and shallow rock socket be neglected. The bearing surface should be clean and free of loose material and water prior to placement of concrete. The drilled center-to-center spacing of drilled shafts should generally be no less than 2.5 times their diameter. A qualified representative of the Geotechnical Engineer should field verify that the drilled shafts are founded on competent bearing materials and the installation procedures meet specifications.

If adequate capacity cannot be developed with reasonable shaft diameter, drilled shafts should be designed as friction-type shafts. Neglecting the overburden, upper two feet and bottom length equal to one diameter of the socket, allowable sidewall shear stress/adhesion of 3,750 pounds per square foot (psf) may be used for the rock socket. If designed as friction-type shafts, the shafts should be designed such that design loads are carried entirely by the rock socket resistance ignoring any end bearing.

Shafts that are installed as friction-type piles must have good sidewall contact with the concrete with preferably rough sides. If any shaft is allowed to sit over 12 hours filled with fluid (water or slurry), the potential for sidewall softening develops. This is especially true with the rock sockets and granular materials. The bedrock material encountered across the site contains argillaceous sandstone that could deteriorate quickly when exposed to water or left to desiccate, losing its strength quickly. If it is anticipated that a drilled shaft excavation will be allowed to remain open for longer than 12 hours, the shaft excavation should be drilled at least 6 inches smaller in diameter and reamed to the design diameter immediately prior to placement of concrete. If a drilled shaft excavation, the shaft should be oversized 6 inches in diameter.

Drilled shafts that are end bearing and are allowed to remain open for more than 12 hours should be drilled short by at least 12 inches and reamed out to the design bearing depth immediately prior to placement of concrete to prevent softening of the bearing material. If a drilled shaft excavation does not have concrete placed within 12 hours of completion

of the excavation, the shaft should be extended 12 inches in depth prior to the placement of concrete.

Precautions should be taken to permit the shafts to be drilled and the concrete placed under relatively dry conditions. Although no significant seepage was encountered by any of the borings drilled for this project, water could flow into the drilled shaft excavations at other locations during installation particularly within wet zones that may be present in the rock. It should be anticipated that materials across the site could vary considerably and temporary casing will be required during the drilling and concrete placement to seal out water seepage in the overburden and prevent cave-in. During simultaneous concrete placement and casing removal operations, sufficient concrete should be maintained inside the casing to offset the hydrostatic head of any groundwater. Extreme care must be exercised during concrete placement and removal of the casing so that soil intrusion is avoided.

When using drilled shaft foundations in conjunction with MSE retaining walls, it is necessary to consider the placement of the drilled shafts with respect to the MSE wall and soil reinforcing straps. Drilled shafts should be installed at a sufficient distance from the back of the MSE wall such that the soil reinforcement can be splayed around the shafts with splay angles of 15 degrees or less. From the center of the drilled shafts to the back of the MSE wall, this dimension is approximately two times the shaft diameter.

5.4 General Earthwork Recommendations

The proposed alignment of US 52 Ramp A over Ohio River Road traverses a gently to moderately sloping area. Consequently, the placement of fill will be required to construct the approach embankments at the abutments. The maximum fill anticipated is approximately 35 feet, near the proposed forward abutment. In addition, excavations up to 16 feet deep are anticipated for the foundations.

The proposed MSE wall at the forward abutment is located at the base of an existing rock cut. Consequently, it is anticipated that significant excavation into bedrock will be required to accommodate the soil reinforcing straps of the MSE wall. The contractor should be prepared to excavate hard, durable sandstone by blasting or other appropriate means. In places where fill is to be placed on bedrock, a level bench should be cut into the bedrock prior to the placement of fill for stability purposes.

Between 2 to 5 inches of topsoil were encountered at the ground surface. All topsoil and vegetation within the footprint of the new embankment and roadway should be removed prior to new fill placement. All pavement, and organic soil within 3 feet of subgrade level should also be removed prior to placing fill or pavement materials.

Organic soils were not encountered in any of the borings. However, if organic soils are encountered, it is recommended that at least the top 3 feet of subgrade soil be removed prior to the construction of the new embankment. Overexcavation may need to be deeper if organic soils are encountered at depths greater than three feet.

The embankments should be constructed in accordance with ODOT Items 203. It is anticipated that the embankments will be constructed with side slopes of 2H:1V or flatter. Based on the materials encountered by the borings, the foundation soils are considered adequately stable under the proposed embankment loads.

Excavations should be prepared in accordance with ODOT Item 503, "Excavation for Structures." Excavations deeper than 5.0 feet must be sloped or shored to protect workers entering the excavations. Refer to OSHA regulations (29CFR Part 1926) concerning sloping and shoring requirements for excavations.

It is recommended that earthwork be performed under continuous observation and testing by a soils technician with the general guidance of a geotechnical engineer.

Relative to the footing excavations, the following additional recommendations are presented:

- 1. All footings should be founded deep enough for frost protection, considered to be 36 inches in this area.
- 2. Excavation bottoms should be examined by the geotechnical engineer prior to placement of reinforcing steel and concrete in order to determine the suitability of the supporting soils.
- 3. Excavations should be undercut to suitable bearing material if such material is not encountered at the planned footing level. Such undercuts may be backfilled with a lean mix concrete (1,500 psi @ 28 days) or footing concrete.
- 4. All footing excavations should be cut to stable side walls and flat bottoms with the bottoms comprised of firm soil undisturbed by the method of excavation or softened by standing water. Concrete should be placed the same day that the footings are excavated.

While excavating for the footings, unsuitable soils may be encountered deeper than indicated by the borings. These unsuitable materials will need to be overexcavated until suitable bearing material is encountered. Overexcavations should be backfilled with compacted engineered fill.

5.5 Groundwater Considerations

Water seepage was not encountered in any of the borings and no groundwater was noted prior to adding drill water. Representative final water levels could not be obtained due to the use of water during rock coring operations. Foundation construction on top of the rock is expected to encounter only minor seepage. Excavations or shafts extending below ground level may encounter more significant seepage through fractured zones in the rock.

16

The contractor should be prepared to deal with seepage and water flow that may enter any excavations.

6.0 CLOSING REMARKS

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our report.

Respectfully submitted,

DLZ OHIO, INC.

Steven J. Riedy DAA

Steven J. Riedy Geotechnical Engineer

Dowthy a. adams

Dorothy A. Adams, P.E. Senior Geotechnical Engineer

sjr

ł

M:\proj\0121\3070.03\Stability Analyses\Documents\MSE Wall letters\US 52 Ramp A\US 52 Ohio River Road-Structure Report-RAMP A 6-1-07_sjr.doc

APPENDIX I

l

i.

j) LJ

<u>к.</u> ;

1 -

ل...

1

| ___

.

Structure Plan and Profile Drawing - 11"x17"

.

	ING LOCAT	1046	1		٦
BORING No. TR-62 TR-64 TR-76 BENCHMARK I	STATION 43+02.06 40+58.96 38+59.24	OFFSET 93.34 LT.	2	DESIGN MENCY	a HULETE DATE SAIT 340 DALLE, 400 (DIF
	RAFFIC DA) LATER)	nevieneo arte JRC 12/5/06	a staucture fite munace
CURRENT YEA DESIGN YEAR CURRENT YEA DESIGN YEAR	ADT (2030 R ADTT (20) = 10,500 10) = 938		DAMER NTN	VENISED
PROF YPE: 2 SPAN CONTINC GRADE 50W, DOG		PLATE GIRDER A		NSL.	CHECKED CHECKED
COMPOSITE REII ON INTEGRAL PI ON PILES AND N PANS: II6'-85%, II6 DADWAY: 30' TOE TO DADING: HS-25 (CASE LOADING FWS KEW: 00*00'00" WITH REFERENCE LINE UPERELEVATION: 0.05	NFORCED COM TER AND STU MSE WALL EM '-8% C/C TOE OF PAR TOE OF PAR I) AND AL GO PSF M RESPECT T C (ALSO SEE S6 FT/FT AC	ICRETE DECK SU IB ABUTMENTS F IBANKMENTS BEARINGS APETS TERNATE WILIT TO THE TRANING PLAN ROSS LANE	IPPORTED FOUNDED ARY	2	STA, 39+14.64 STA, 41+52.57
ELEVATIONS BE	IOLITHIC CC -BI (30' L TH PLAN DIA ITS SHOWN A SHALL CONI PROFILE GR. ROADWAY PLA	DHCRETE ONG) MENSIONS ARE S ARE APPROXIMAT FORM TO PLAN O ADE IS WITHIN ANS FOR PAVEMU	SHOWN TE. SROSS BRIDGE	· · · ·	BRIDGE US-52-XXXX US-52 RAMP A TO NORTHBOUND S.R. 823
UTILITIES I UTILITIES DISPOSA IN THE TS&L SUBM FOUNDATION DA ALL NEW PILES SH PILES AND HAVE A OF 90 TONS	ITTAL <u>TA:</u> IALL BE 16*	DIA. CIP		00 0-702.172	PID 77366
				1- I-	\mathcal{I}^{e}

APPENDIX II

General Information – Drilling Procedures and Logs of Borings Legend – Boring Log Terminology Boring Logs – Seven (7) Borings

لد. با

i J

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Geot\Forms\General Info English.doc

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot
<u>Term</u>	Standard Penetration
Very Loose	0-4
Loose	4 – 10
Medium Dense	10 — 30
Dense	30 – 50
Very Dense	over 50

Cohesive Soils - Consistency

<u>Term</u> Very Soft	Unconfined Compression <u>tons/sa.ft.</u> less than 0.25	Blows/Foot Standard <u>Penetration</u> below 2	Hand Manipulation Easily penetrated by fist
Soft	0.25 – 0.50	2 – 4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.0	4 – 8	Penetrated by thumb with moderate pressure
Stiff	1.0 - 2.0	8 – 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 – 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

- b. Color If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".
- c. Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows:

Description	Size	Description	Size
Boulders	Larger than 8"	Sand – Coarse	2.0 mm to 0.42 mm
Cobbles	8" to 3"	– Fine	0.42 mm to 0.074 mm
Gravel – Coarse	3" to ¾"	Silt	0.074 mm to 0.005 mm
– Fine	¾" to 2.0 mm	Clay	smaller than 0.005 mm

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English.doc

d.	The main soil component is listed first.	The minor components are listed in order of decreasing percentage of particle s	ize

Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes. e.

trace	0 to 10%
little	10 to 20%
some	20 to 35%
"and"	35 to 50%

f. Moisture content of cohesionless soils (sands and gravels) is described as follows:

lerm	Relative Moisture or Appearance
Dry	No moisture present
Damp	Internal moisture, but none to little surface moisture
Moist	Free water on surface
Wet	Voids filled with free water

. . . .

- The moisture content of cohesive soils (silts and clays) is expressed relative to plastic properties. ġ.
 - Term **Relative Moisture or Appearance**

— • • •

Dry	Powdery
Damp	Moisture content slightly below plastic limit
Moist	Moisture content above plastic limit but below liquid limit
Wet	Moisture content above liquid limit

- 10. Rock Hardness and Rock Quality Designation
 - The following terms are used to describe the relative hardness of the bedrock. а.

<u>Term</u>	Description
Very Soft	Permits denting by moderate pressure of the fingers. Resembles hard soil but has rock structure. (Crushes under pressure of fingers and/or thumb)

- Soft Resists denting by fingers, but can be abraded and pierced to shallow depth by a pencil point. (Crushes under pressure of pressed hammer)
- Medium Hard Resists pencil point, but can be scratched with a knife blade. (Breaks easily under single hammer blow, but with crumbly edges.)
- Hard Can be deformed or broken by light to moderate hammer blows. (Breaks under one or two strong hammer blow, but with resistant sharp edges.)
- Very Hard Can be broken only by heavy and in some rocks repeated hammer blows.
- b. Rock Quality Designation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core run.
- 11. Gradation when tests are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).
- 12. When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated graphically.

13. The standard penetration (N) value in blows per foot is indicated graphically.

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English.doc

Project SC1823-0.00 Lab for S18, 39-14.0, 11.2 ft. LT of US S2 Ramp A BL Date Drate Coll OT Lab for MUTER Project S18, 39-14.0, 11.2 ft. LT of US S2 Ramp A BL Date Drate (S18, 39-14.0, 11.2 ft. LT of US S2 Ramp A BL Project S18, 39-14.0, 11.2 ft. LT of US S2 Ramp A BL Project S18, 39-14.0, 11.2 ft. LT of US S2 Ramp A BL Constant agents: value recenses at the follower the follower of project statements: the follower of the follow	T	T		€.					/•	50+C	20+0				
SCI-823-0.00 SCI-823-0.00 of US 52 Ramp A BL Date Drifect: 02/01/07 eff seepage at: None at completion: None (prior to coring) 10.05 (finicate hollowstem augers, includes driling water) GRADAT/ON ION SECRIPTION 8, 6, 5, 6, 6, 6, 7, 8, 10 DESCRIPTION 8, 6, 5, 6, 6, 7, 8, 10 NDY SILT (A-4a), little to some gravel, trace 8, 6, 5, 6, 6, 7, 8, 10 STAVEL WITH SAND AND SILT (A-2-4), includes driling water) 13 BAVEL WITH SAND AND SILT (A-2-4), inp. 13 STAVEL WITH SAND AND SILT (A-2-4), inp. 13 Borown SANDSTONE, argillaceous. 13 d brown SANDSTONE, very fine to ghily weathered, argillaceous. 26 d drown and gray SANDSTONE, very fine to ghily weathered, argillaceous. 26 d gray SANDSTONE, the grained, slightly ous, argillaceous, thinhy bedded, slightly ous, argillaceous, thinhy bedded, slightly 9, 284 psi. 9, 284 psi.	0.03			1) NO	7 6				-1-0-						
SCI-823-0.00 SCI-823-0.00 of US 52 Ramp A BL Date Drifect: 02/01/07 eff seepage at: None at completion: None (prior to coring) 10.6 (finiste hollowstem augers, includes driling water) GRADATION NDY SILT (A-4a), little to some gravel, trace s sandstone fragments; dry to damp. % & % % % % % % % % % % % % % % % % % %	307			ent, 9	$^{\circ}$										
SCI-823-0.00 SCI-823-0.00 of US 52 Ramp A BL Date Drifect: 02/01/07 at completion: None (prior to coring) 10.6 (finishe hollowstem augers, includes driling water) GRADATION A Aggregation includes driling water) \$\$,6,6,000 DESCRIPTION \$\$,6,6,000 DESCRIPTION \$\$,6,6,000 STAVEL \$\$,6,6,000 Discorting water) \$\$,6,6,000 01007 SILT (A-4a), little to some gravel, trace \$\$,6,6,000 STAVEL WITH SAND AND SILT (A-2-4), inp. \$\$,6,000 BAVEL WITH SAND AND SILT (A-2-4), inp. \$\$,6,000 STAVEL WITH SAND AND SILT (A-2-4), inp. \$\$,6,000 Stavel statistic day seams. \$\$,6,000 G brown SANDSTONE, argillaceous. \$\$,6,000 I brown SANDSTONE, trace grained, slightly \$\$,6,000 G provery. \$\$,6,000 G provery. \$\$,6,000 G gravel seillaceous. \$\$,6,0000 G gravel seillaceo	2-1-2	1		ETH	ot - 30		· h		r						
SCI-823-0.00 SCI-823-0.00 of US 52 Ramp A BL Date Drifect: 02/01/07 Generation None (prior to coring) 10.05 (made hollowstem augers, includes driling water) Date Drifect: 02/01/07 Includes driling water) 10.65 (made hollowstem augers, includes driling water) 0 DESCRIPTION % & Aggregate includes driling water) % & Aggregate is sandstone fragments; dry to damp. STAVEL WITH SAND AND SILT (A-2-4), imp. 13 12 - 10 48 17 STAVEL WITH SAND AND SILT (A-2-4), imp. 13 12 - 10 48 17 STAVEL WITH SAND AND SILT (A-2-4), imp. 13 12 - 10 48 17 STAVEL WITH SAND AND SILT (A-2-4), imp. 13 12 - 10 48 17 State science 6 26 5 - 17 26 5	5			PEN ire C	er fo				/						
SCI-823-0.00 of US 52 Ramp A BL Date Drilled: 02/01/07 et seepage at: None at completion: None (prior to coring) 10.6 (fielde hollowstem augers, includes drilling water) 10.6 (fielde hollowstem augers, includes drilling water) 10.6 (fielde hollowstem augers, includes drilling water) 10.6 (fielde hollowstem augers, includes drilling water) 10.7 SILT (A-4a), little to some gravel, trace s sandstone fragments; dry to damp. 26 26 1 1 1 1 2 1 1 0 48 17 3FAVEL WITH SAND AND SILT (A-2-4), mp. 3FAVEL WITH SAND AND SILT (A-2-4), mp. 26 26 1 1 17 26 5 1 17 26	No.			RD	vs pc				<u>L</u>						
SCI-823-0.00 of US 52 Ramp A BL Date Drilled: 02/01/07 at completion: None (prior to coring) 10.6 (finalde hollowstem augers, includes drilling water) includes drilling water) (Riside hollowstem augers, includes drilling waters, includes drilling water	dob			NDA al M	Blov										
SCI-823-0.00 Col-823-0.00 of US 52 Ramp A BL Date Drifled: 02/01/07 et seepage at: None at completion: None (prior to coring) 10.05 (maide nollowatern) includes drilling water) <u>GHADATTON</u> DESCRIPTION % & % % % % % % % % % % % % % % % % % %				STAI	PL 11										
SCI-823-0.00 Color IOT of US 52 Ramp A BL Date Drillect: 02/01/07 et seepage at: None at completion: None (prior to coning) 10.6 (finate hollowstem augers, includes drilling water) Amonon IOF SCRIPTION 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0					KEID %		<u> </u>		 ۵						
SCI-823-0.00 of US 52 Ramp A BL Date Driflect: 02/01/07 ter seepage at: None at completion: None (prior to coring) i.o.6' (inside hollowstern augers, i.o.6' (inside hollowstern augers, interted, stightly outs, argillaceous, thinly bedded, slightly g,284 psi.			2						26						
SCI-823-0.00 of US 52 Ramp A BL Date Drilled: 02/01/0 et escepage at: None at completion: None (prior to coring) 10.6 (inside hollowstem augers, includes drilling water) DESCRIPTION DESCRIPTION NDY SILT (A-4a), little to some gravel, trace is sandstone fragments; dry to damp. SRAVEL WITH SAND AND SILT (A-2-4), mp. Brown and gray SANDSTONE; argillaceous, laminated, it brown and gray SANDSTONE; very fine to ghly weathered, argillaceous, laminated, intains clay seams. ecovery. Bottom of Boring - 24.5' Bottom of Boring - 24.5'			011	pue	S .7 %				in the second						
SCI-823-0.00 of US 52 Ramp A BL Date Drilled: 02/01/0 et escepage at: None at completion: None (prior to coring) 10.6 (inside hollowstem augers, includes drilling water) DESCRIPTION DESCRIPTION NDY SILT (A-4a), little to some gravel, trace is sandstone fragments; dry to damp. SRAVEL WITH SAND AND SILT (A-2-4), mp. Brown and gray SANDSTONE; argillaceous, laminated, it brown and gray SANDSTONE; very fine to ghly weathered, argillaceous, laminated, intains clay seams. ecovery. Bottom of Boring - 24.5' Bottom of Boring - 24.5'			ADA	pue	S .M %		1		1						
SCI-823-0.00 of US 52 Ramp A BL at completion: None (prior to coring) at completion: None (prior to coring) includes driling we DESCRIPTION MDY SILT (A-4a), little to some is sandstone fragments; dry to to sandstone fragments; dry to to and gray SANDSTONE, argillace ghly weathered, argillaceous, la ritains clay seams. ecovery. ecovery. Bottom of Boring - 24.5'		20	GH	pue	S 'O %				26						
SCI-823-0.00 of US 52 Ramp A BL at completion: None (prior to coring) at completion: None (prior to coring) 10.6' (inside hollowster includes drilling we brown SCRIPTION SILT (A-4a), little to some is sandstone fragments; dry to to sandstone fragments; dry to to a brown SANDSTONE, argillace d brown and gray SANDSTONE ghly weathered, argillaceous, la ritains clay seams. ecovery. ecovery. Bottom of Boring - 24.5' Bottom of Boring - 24.5'		/01/		ətebə.	IDDA %	19730-000	13		26						
[[[[[[[[[[[[[[[[[[[A 120 X 131	of US 52 Ramp A BL	RVATIONS: Witterson of Name	er level	DESCRIPTION	- 5" ff brown SAI clay; contain		.0' stiff, moist.	dense brown GRAVEL WITH SAND AND SILT (A-2-4), s clay; dry to damp.	srely weathered brown SANDSTONE, argillaceous.		to medium hard brown and gray SANDSTONE; very fine to ium grained, highly weathered, argillaceous, laminated, ly fractured, contains clay seams. 4.7'-15.1', lost recovery.	ium hard to hard gray SANDSTONE; fine grained, slightly thered, micaceous, argillaceous, thinly bedded, slightly ured. 0.8'-21.3', qu = 9,284 psi.	Bottom of Boring - 24.5'	
		Loci		*							in providence		Æ		
Hand Hand Penetro- Penetro- Press/Core (psi) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5			Sample No.	the second second second		-	N	e	4	Q	9				
Drive A 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3													
Briess / Core Standard Annual - Main -	ms, Inc	g B-3						8 16			-++		e - international and a second		
Same Sam Sam Sam S	anSyste	: Borin					4	7	-550.4- 38	547.4 48				533.9	
ПSystems, Inc. Вогіда Вай (in) Вогіда Вай (in) Вогіда Вай (in) Вай (in)	Client: Tr	LOG OF:			2	6 ⊂4 ↓ ↓ ↓ ↓	<u>ا</u> ۱ ا	- 1 - 1						24.5	T T

LIFE: 0151-3010-03 [0/1/2001 11:40 WW]

S. Inc. Light Control Project: SCI-B23:00 B-34 Location: Sta. 40+27.4, 49.7 ft. LT of US 52 Ramp A BL Date Drillect. B-34 Location: Sta. 40+27.4, 49.7 ft. LT of US 52 Ramp A BL Date Drillect. B-34 Location: Sta. 40+27.4, 49.7 ft. LT of US 52 Ramp A BL Date Drillect. B-34 Location: Sta. 40+27.4, 49.7 ft. LT of US 52 Ramp A BL Date Drillect. B-30 Print Distribution Distribution B-1 Distribution Distribution Distr B-1 Distributio	S. Inc. Location: Sita. 40+27.4, 49.7 ft. LT of US 52 Ramp A BL Date Drifter: Drive from the print of the	01/26/07	GRADATION	bns2			6 	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	13 23 1 36 7		7			
Image: Signal backweight of the system of	Is, Inc. <i>LEFT Forming</i> B-34 Location: Star B-34 Location: Star B-34 Location: Star B-34 Location: Star B-34 Location: Star B-34 Location: Star Penetro- Penet	Project: SCI-823-0.00 49.7 ft 1 T of 11S 52 Ramb A Bl Date Drilled		Wa er level	DESCRIPTION	own SILT (A-4b), some fine to coarse gravel; damp to moist.		Very stiff brown SANDY SILT (A-4a), little gravel, trace clay; contains sandstone fragments; damp to moist.			Severely weathered brownish gray SANDSTONE.	Soft to medium hard brown and gray SANDSTONE; very fine to medium fine grained, highly weathered, argillaceous, laminated, highly fractured, contains clay seams, iron stained.	Medium hard to hard gray SANDSTONE; fine grained, slightly weathered, argillaceous, micaceous, laminated to thinly bedded, slightly fractured. © 20.0'-20.1', clay seam. © 20.1'-20.7', qu = 5,450 psi, Er = 326,649 psi.	Bottom of Boring - 24.0'
Image: Signed bit with the second	Image: Sign of the second state Imag			Hand Penetro- meter (tsf) / * Point-Load		3.0	2.0	2.5	1	1				
		11	Sample	No.			N	ო	4	IJ	ų	ý		z
	Boring Boring Boring Boring Boring Boring Boring	~	1			ល	5				+	1		

	2		
	t, % - 1 0 40		
	IETRA Conten 30 30		
	D PEN sture C per fo		
	IDARI I Mois H		
	STAN Natura PL E		
	% Clay		
	DAn bring .M &		
107			
12/01	% Aggregate	<u> </u>	
		dded	
ite Dri	ugers,	d, slit	
Dê	ig) tem al j watei	, thin	: : : : : : : : : : : : : : : : : : :
	o corin ollows drillinç	ID SI ine g cous	
BL	prior to side hi ludes	D AN NE; fi nicac	12.5 ¹
M du	Jone Jone (.8' (in inc	SAN STON STON Uls, r	- ing
2 Ra	e at: N tion: N CRIF	VITH VITH AND AND AND AND AND aced.	e Bor
US 5	eepag omple DES	TEL V gmer argil argil actur ay se ay se m.	Bottom of Boring
		RAV e fra d gr ard g ered, tely fr ins cl ins cl ins cl ins cl	Bott
3 ft. R	6	rray G dston dston heath derai derai derai derai	
.28.3	TIONS	A model A m	
29.1,	RVA1	7.5'-6 B.4'-6	성 집 것 같은 것 같은 것 같은 것 같이 많다.
. 40+	WATE OBSE		
on: Sta	land netro- neter st) / nt-Load ength psi)		
Locati	and the second se		
	Press / Core		
2	S S		
B-35	Цесолеи) (in)		
	"ð 19q zwola	18 50/4 50/3 120"	
	Elev. (ft) 558.4		
000	lepth (ff)		52 50 2 2 2
	Location: Sta. 40+29.1, 28.3 ft. RT of US 52 Ramp A BL Date Drilled: 02/01/0	Boring B-35 Location: Sta. 40+29.1, 28.3 ft. RT of US 52 Ramp A BL Date Drillect: 02/01/07 Boring B-35 Location: Sta. 40+29.1, 28.3 ft. RT of US 52 Ramp A BL Date Drillect: 02/01/07 Row Perform Water Water No. Performance Row Perform Mo. Performance Standard GRADATION Row Perform Mo. Performance Standard Standard Standard Row Perform Mo. Performance Water level at completion: None (prior to coring) Addition of the corrent, 3 Standard Row Perform Mo. Performance Mo. Performance Standard Row Col * Point-Load Dirive Performance Pilling water) Pilling water) Pilling water) Pilling water) Bio Proposition Dirive Pilling water) Pill	Boring B-35 Location: Sta. 40+29.1, 28.3 ft. RT of US 52 Ramp A BL Date Drilled: 02/01/07 Boring B-35 Location: Sta. 40+29.1, 28.3 ft. RT of US 52 Ramp A BL Date Drilled: 02/01/07 Bit Hand Water level at completion: None (print to coring) Monte (print to coring) Anternation: Nater level at completion: None (print to coring) Bit Mon Prenetro- Water level at completion: None (print to coring) Mon Anternation Bit Dinvest per 6 (1s) / (1

Location: Sta	IDARD PENETRATIC	PL F IL Blows per foot - \bigcirc 40					
Incident: SCI-823-0.00 Location: Sta. 41+53.2, 8.2 ft. LT of US 52 Ramp A BL Date Drilled: 01/31/0 Hand WATER Date Drilled: 01/31/0		۲ % CIay					
Incident: SCI-823-0.00 Location: Sta. 41+53.2, 8.2 ft. LT of US 52 Ramp A BL Date Drilled: 01/31/0 Hand WATER Date Drilled: 01/31/0		4115 % PS '1 %					
Incident: SCI-823-0.00 Location: Sta. 41+53.2, 8.2 ft. LT of US 52 Ramp A BL Date Drilled: 01/31/0 Hand WATER Date Drilled: 01/31/0	ADA brie	S W %					
Project: SCI-823-0.00 Location: Sta. 41+53.2, 8.2 ft. LT of US 52 Ramp A BL Date Drilled: Hand WATER Date Drilled:	and the second second	°S 'O %					
Project: SCI-823-0.00 Location: Sta. 41+53.2, 8.2 ft. LT of US 52 Ramp A BL Date Drilled: Hand WATER Date Drilled:	egate	9166A %		-			
Location:	WATER OBSERVATIONS: Water seepage at: None Water level at completion: None (prior to coring) 1.2' (inside hollowstem augers, includes drilling water)	DESCRIPTIC	Topsoil - 4" Very dense gray SANDY SILT (A-4a), little clay; contains sandstone fragments; dry.	Medium hard to hard gray SANDSTONE; fine grained, slightly weathered, argillaceous, micaceous, thinly bedded, slightly to moderately fractured, iron staining. @ 3.0'-4.1', lost recovery. @ 6.7'-7.5', high angle fracture.	@ 8.6'-8.7', clay seam. @ 9.6'-10.0', qu = 908 psi.	Bottom of Boring - 13.0'	
1 - 1	Hand Penetro- meter (tst) / * Point-Load	Strength (psi)					
San	, Core	V ss919		т	E N		
1 J	Samp No.	Drive	- 0		86% 86%		
i, Inc. <mark>B-36</mark>	(uị) Kıs	өлорөЦ	4 0		110"		
I ranSystems, OF: Boring E		d smola	18 50/5 50/4	1	120"		
ancy B	Elev.	(ft) 558.5	558.2	<mark>- 255.5-</mark>		545. 5	
Client: Trai LOG OF:							К 5

	l	MA	11:40	L002/T/9]	E0-010E-1210	: gui
--	---	----	-------	------------	--------------	-------

	Job No. 0121-3070.03		STANDARD PENETRATION (N) Natural Moisture Content, % -	Blows per foot - \bigcirc 20 30			
			· ·	1115 %	46		
			pues	5.4%	9		· · · · · · · · · · · · · · · · · · ·
۰ ۱			GRADATION band brass	'W %	1		
6		S	ອີ pues	° O %	15	a=uuranteeta	
-00 -00	۰.	3/18/05	jregate	90¥ %	44		
DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	Project: SCI-823-0.00	Sta. 42+78.1, 6.5 ft. LT of US 52 Ramp B BL. Date Drilled: 3	WATER OBSERVATIONS: Water seepage at: None Water level at completion: None (prior to coring) 1.9' (includes drilling water)	DESCRIPTION	Aggregate base - 6" Very stiff gray SANDY SILT (A-4a), little gravel, little clay; contains sandstone fragments; damp. Severely weathered gray SANDSTONE.	Hard gray SANDSTONE; very fine to fine grained, slightly weathered, argillaceous, micaceous, thinly bedded; slightly fractured. @ 9.3', qu = 10,794 psi. @ 11.2'-11.3', high angle fracture.	Bottom of Boring - 16.0'
)		Location: S	Hand Penetro- meter (tsf) /	Strength (psi)	с С		
]		Ľ			· · · · · · · · · · · · · · · · · · ·	Ē.	
۱			Sample No.	Đrive	Q	RQD 78%	
}	. Inc.	TR-62		юзая	14	Rec 120°	
]	~		"ber 6"	swoją	20/2 6 50/2 6	Core 120*	
)	TranSystems,	LOG OF: Boring	Elev.	(it) 559.1	-558. 6 -558.6		543.
)	Client:		Depth	Ê	 ວບ: ທີ່ທີ່ ວີ ຕີ		

۲

	Job No. 0121-3070.03		STANDARD PENETRATIC Natural Moisture Content, %	$PL \longrightarrow 1L$ Blows per foot - \bigcirc 10 20 30 40			- <u>T</u> O /			7						
\square				% Clay		17	10.		1		· · ·]
	×		<u>No</u>	₩IS %		47	30				· · · · · · · · · · · · · · · · · · ·				·	
~ `.	:			S 1 %		÷	33				· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
		Ċ	G ² I	SW% SO%		10	। हर								· .	
		ŝ	-	v£0% v66∀%		12	10					,	<u> </u>	• • .		
		3/30/05	04000	~~v /o		1	*		· •				· · · · ·	· 	· · ·	
DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	Project: SCI-823-0.00	Sta. 38+59.2, 27.1 ft LT of US 52 Ramp A BL Date Drilled: 1	WATER OBSERVATIONS: Water seepage at: None Water level at completion: None (prior to coring) 4.0' (includes drilling water)	DESCRIPTION	VTopsoil - 2" Hard brown SILT AND CLAY (A-6a), trace fine to coarse sand, trace gravel; damp.	Very stiff to hard brown SANDY SILT (A-4a), trace to little clay, little gravel; damp.		Medium dense brown SANDY SILT (A-4a), trace clay, little gravel; damp.	@ 11.0', contains sandstone fragments	 Severely weathered brown SANDSTONE. 	Hard brown SANDSTONE; very fine to fine grained, moderately to highly weathered, medium bedded, moderately fractured. @ 16.4-16.8', 17.3', 18.4', filled fractures.	© 19.6', qu'ay © 20.9'-21.3', fractured. © 19.6', qu = 11,036 psi.		Bottom of Boring - 25.0'		
() ×		Location: SI	Hand Penetro- meter (tsf) /	Strength (psi)	4.5+	4.0	1					•				
\bigcup		Ĕ		V ssərq		· · · · · · · · · · · · · · · · · · ·			· ·		· · · · ·	臣			· · ·	
<u>ر ~ ۱</u>			Sample No.	<i>ө</i> лйQ	. .	2	n	4	ιŋ	9		ROD 64%				
		9	· · · · · ·													
<u> </u>	Inc.	Н-7	(uļ) Ku	өчорөң	14	9	4	46	8	1		Rec 120"				
	TranSystems, Inc.	LOG OF: Boring TR-76	"8 19C	q ewola	4 6 7	23 3 5	2 7 15	5 9 12	11 12 13	1 50/5		Core 120				
c1	nSy.	В	, ie	(#) 555.1	4.9	552.1-		547.1-		-540.6- -540.6-				530.1-		
	Tra	Щ	· · · ·		ый 	₩ 		λ I I I	<u></u>							
	Client:	LOG (neoth those	E (E)		с с с с	, 1 ,		, , 1	1 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2		50 -		-25.0		30
						1		I		1.1		MA OD:II	LOOZ/T/9 1		IZIO '37II.	a

Job No. 0121-3070.03			STANDARD PENETRATIC Natural Moisture Content, %	$\begin{array}{c} PL \\ Blows per foot - \bigcirc \\ 10 20 30 40 \end{array}$	itseid		=0.)	-0-	P	1						
				(BI) %	6·	ω	8	÷.		·	64 16	· · ·			·			·
	Į	5		111S %		2	21	. 1						- <u> </u>				<u> </u>
		ξ		S 3 %		27	12				19.			- 				
		ž		5 W %	1			<u> </u>							••••••••••••••••••••••••			<u></u>
	ß	5		s 'O %	58		-				. +-						<u> </u>	· .
	CU/02/2		ເຣດີສຸເອ	66∀ %	4	<u>ዋ</u>	0	· .			0				-			<u> </u>
Project: SCI-823-0.00	t.0, 9.7 ft. RT of US 52 Ramp B BL Date Drilled:	WAIEH OBSERVATIONS: Water seepage at: 16.0'-17.0'		DESCRIPTION	Asphalt Concrete Pavement - 10" Medium dense gray GRAVEL WITH SAND (A-1-b), trace silty	Medium dense brown COARSE AND FINE SAND (A-3a), some	Very stiff brown SILT AND CLAY (A-6a), little fine to coarse sand: damp to moist.	Stiff to very stiff brown SILT (A-4b), little clay, little fine sand, trace coarse sand; contains sandstone fragments; damp.			@ 11.0'-12.5', damp to moist.		Severely weathered brown SANDSTONF	Hard brown SANDSTONE; very fine to fine grained, slightly to highly weathered, argillaceous, micaceous, thickly bedded to massive, moderately to highly fractured. @ 17.5'-20.0', broken. @ 19.1', grav.	@ 22.8', qu = 11,463 psi.			Bottom of Boring - 27.5'
	Location: SI	Hand Penetro-	reneur meter (tsf) / * Point-Load	Strength (psi)			3.5	20		0 2 2	5.5							
╏┟		g	, Core	Press /								; ,			æ			<u> </u>
		Sample No.		Đrive	₹¥	B	ື	ຸຕ		4	S	9	۲,		RQD 58%			
lnc.	TR-66	* }	(uį) <i>L</i> ue	вуоран		N	13	9		o	11	14	. 2		Rec 120			
TranSystems, Inc.	LOG OF: Boring		"8 '190	swol8	11 13	. ال خو معاد	° 7 10	10 7 8	2	10	8 5 7	3 6 30 3	11 50/3		Core 120"	ρ ο ιτο το τ		
Sus	ň		Elev.	(ft) 549.8	-549.0- -548.5-	546.8	5 7 7 7	<u>,</u> ,				1 []	532.8 532.8	2 2 6 1 1 1 1			t S T	, , , ,

APPENDIX III

ς.

.

-- -

<u>[</u>_____

٢---

į

i)

ĺ

. د با

 $V_{1,1} \neq$

ر...

. . .

Ĺ,

Laboratory Test Results

01-307003 B-34 R-1 Chart 1

01-307003 B-35 R-1 Chart 1
			si)																
			Strength (psi)	9,284		5,450		10,892			9,260								
				28,510		16,890		 33,550			28,770								
			Mass (Gram) Unit Wt. (pcf) Load (lbs)	149.7		155.4		157.2			158.3								
	ens		Mass (Gram)	559.95		589.07		 578.35			476.21				 				
	pression of Rock Core Specimens (ASTM D-2938)	1 ransystems	Volume (ft ³)	0.0082441		0.0083552		0.0081118			0.0066309		 						
	ore S	1 rans		2.347 0		 2.347 0		 2.299 0		-	1.877 0								
	ock C	Client: Iran		4.641		 4.661		4.553			3.719		 						
	Ssion of Ro (ASTM D-2938)		ר <mark>י ג</mark>	4.639		4.664		4.555			3.720								
	sion STM E		L2	4.642		4.659		4.554			3.719								
	pres: (A		ت	4.643		4.661		4.550			3.717								
\Box	Com		D _(ave)	1.977		1.986		1.980			1.981						i		
	ned		ő	1.978	1.980	1.987	1.986	1.983	1.980		1.983	1.977							
Π	Unconfined Com	E0.0/	S ⁶	1.980	1.982	1.985	1.987	1.979	1.978		1.986	1.980							
บ	Una	0121-30/0.03		1.970	1.974	1.987	1.986	 1.981	1.981		1.982	1.979							
		ין א	5	20.8'-21.3'		20.1'-20.7'		 8.4'-8.9'			9.6'-10.0'								
		rojec		-		1		+			-								
		DLZ Project No Droiset Name:	Boring	В-33		B-34		B-35			B-36								

Engineers * Architects * Scientists

6121 Huntley Road * Columbus, Ohio * 43229-1003 * Phone: (614) 888-0576 * Fax (614) 888-6415

APPENDIX IV

I.

ل. . . ا

÷ _

MSE Wall Global Stability Analysis Results MSE Wall Bearing Capacity and Stability Calculations MSE Wall Settlement Calculations Drilled Shaft – End Bearing and Side Resistance Calculations Drilled Shaft – Laterally Loaded LPile Analysis

								((9										
<u> </u>					7	CI	LIENT		Tran	Spe	stem	5	Co	-rp						_ F								0.0		
())	ENGINEERS		HITEC	ts • so	CIENTI	STS PI		СТ <u>'</u>	<u>52 (</u> M< F	- <u>87</u> - 87	<u>23</u> (.11	_Ks R	ctso car Ka	<u>now'</u>	<u>th</u>	K	pas	5 <u> </u>		_ S	HEET	NO.	<u></u>	<u> </u>	5 1 V	,(<u>3</u> 7 5	! 29-	12
	PL/	AD DERG	5 • QUI	(VEIU)	(3	- -	Mo	d;4;	107	tion	<u>au</u>	f .	Ka	0	<u> </u>	<u>, ap</u>		· Y		_ (_ (HEC	KED E	ΒY	DA	4	!	DATE	5. 6/1	107	<u>~ (</u>
								1				; [}										-								_
\bigcap	*	Fr	om	R	evi	seal		Pro	file	*	dal	eel	4	5-11	2-0	7	****	, , , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,		14 (JR, 11) 1	- Au Ani, Au									
	i) A	hah	me	R	ear	A	bui	t mi	wof	M	SE	w	a.11	a	5	ba	ek	- t		brc	k	w	e // 5	 						
		*	<u>90°</u>	Tu	m	ba	k	fr	11771	A	but	me,	1£	N	11	fr	Le.				ļ									
$\left[\right]$		*	<u>55.</u> H=	5	2.9	Kan S	0':	/ 1 : 3	wie sag	<u>a +1</u> '	Inc	a: lue	ling	per E	mb.	ost Sm	-b wit	<u>u.//</u>	<u>en7</u>	· (010	55 -	52	c77	ms					
ų n											Εv										1	0		<u> </u>		 	-			
	MSE								7	VND	EN	<u>a.:</u>				<u>\</u>] =	\mathcal{O}	7.1	<u>, p</u> 1 =	^ ^	ナーティ	130	<u>en</u> 9)	<u>+</u> 91	PIN DI	9 <u>.</u>)‡(aps		
[_]						<u> </u>		_		Rej	afor	ing	5+1	a P s				- f	P				L-J -							
								4						/		<u>X =</u>	2.	<u>1)-</u>	33	5 :		1.7	,							
ሰጉ -		·			· 、															3		-	 							
				<u> </u>	- L-	€X→ →							 	0	rer	ap ,	as	۵		<u>ati</u>		£.	hi	<u>egh</u>	+					
				K		-33	5—	>							1. + 50. ⁵			Ø.	3	·H										
~			· 				·····						 											. 	 					
			F	00	er l	op	<u>}</u>	·D,	31				Use	· · ·	Ka	= (2		- R		kte	rna.	1	ste	61	1.ty				
\prod					E						hic		te		•	D	(ŦНи	14	- ^	11-	-		117					
<u>ل</u>								<u>) e e -</u>	<u> </u>	11:60	-n.c	[TE	XT.	<u>-</u> }-	~~~	25		<u>17 V</u>	///			00	- 0	73					
\bigcap	_2)_	An	lyn	1_	Fe	Y W	ard		Abut	mu	n <i>†</i>	J.	ISF		wa		4	10	bre	k-	40	- 4	bac	Ł	val	k				
	[']	1	+/ /	Two	n	bac	<u>k</u>	fre	m	A	atn	1	1.	wel	1	Face						· ·	 							
		· /	<u>33.</u>	}	1	ans j	L	ł :	wie		ſ				,									<u></u>						
		*	<u>H =</u>	3	4.1	+ 3	3.0 -	31	10	ne li	dir	9	E	<u>bin 6.</u>	dm	<u>en 7</u>								<u>.</u>						
\bigcup				X =	F,	Öve	rla	\$ (of	6	ein	for	ing	<	tra	ps							}							
[]			 	L	t	0.7	E . '	1	0.	1	37	i 🔪	=		26,	1														
		<u> </u>	+			ļ	\		 	,	 		 	 					<u>e, 5</u>		<u> </u>					<u> </u>		.	<u>_</u>	
[]				<u> X</u> _	<u> </u>	2.1	<u>) -</u>	3	<u> 3. 5</u>		į/	18.	5		⇒	•		3	<u>9.5</u> 7.1	*		2.5	<u>· H</u>		000	er la	A			
		 . r	<u> </u>		 _				11	; ; ; ; ***		 	1).		1/ -			^		1			. 1	. 1		<u> </u>				
6			1_0	ver	1126	3	2 (). 3.	M				Vse	 	K.:	0		502	e.	<u>X ter</u> i	nal.	 	s ta	<u> 6,'/</u>	ty.	• • •		 		
L.	a		; ; ; ; ; ;		L	>	50	e	ati	ne	real		tex	4		R	÷		Fн	WA	-	NH	- 0	0.0	43	 				
$\left\{ \right\}$; ; 			}	[a 1/ 10, 4/		} }	 								
				-		1		1		1		-								<u> </u>	}]	1							

(56)

Ref: FHWA-NHI-00-043

5.4 BACK-TO-BACK WALLS

For walls which are built back-to-back as shown in figure 50, a modified value of backfill thrust influences the external stability calculations. As indicated in figure 50, two cases can be considered.

• For Case I, the overall base width is large enough so that each wall behaves and can be designed independently. In particular, there is no overlapping of the reinforcements. Theoretically, if the distance, D, between the two walls is shorter than:

 $D = H_1 \tan (45^\circ - \phi/2)$ (55)

then the active wedges at the back of each wall cannot fully spread out and the active thrust is reduced. However, it is assumed that for values of:

D > H₁ tan (45° - $\phi/2$) ≈ 0.5 H₁

full active thrust is mobilized.

• For Case II, there is an overlapping of the reinforcements such that the two walls interact. When the overlap, L_R , is greater than 0.3 H_2 , where H_2 is the shorter of the parallel walls, no active earth thrust from the backfill needs to be considered for external stability calculations. For intermediate geometries between Case I and Case II, the active earth thrust may be linearly interpolated from the full active case to zero. For Case II geometries with overlaps greater than 0.3 H_2 , L/H ratios for each wall as low as 0.6 may be considered.

Considering this case, designers might be tempted to use single reinforcements connected to both wall facings. This alternative completely changes the strain patterns in the structure and results in higher reinforcement tensions such that the design method in this manual is no longer applicable. In addition, difficulties in maintaining wall alignment could be encountered during construction, especially when the walls are not in a tangent section.

Based on a performance review, back-to-back walls with overlapping reinforcements may be designed for static load conditions with a distance between parallel facing as low as L/H = 0.6, where H is the height of each wall, and for conditions where the seismic horizontal accelerations at the foundation level is less than 0.05g. For walls in more seismically active areas (up to 0.19g) a distance of $1.1H_1$ is presently recommended. For walls subjected to significant seismic loading (up to 0.40g) successful performance has been observed when the distance between parallel facings was at least $1.2H_1$.

Justification of narrower back-to-back distances ($< 1.1H_1$) between faces in seismically active areas require a more detailed analysis be performed to include effects of potential non-uniform distribution of seismic and inertial forces within the wall, as suggested by numerical studies and not provided for in the present design methodology.

-178-

	ן או			r	7	7		(्र रू	٢.,	.L.		1	7.	. /	0Ľ	00T	D.	-9				~	21	21-	· 30	70		2	
ALT T			7		L	1 ⁰			<u> < ()</u>	<u>- 77</u>	<u>9721</u> 22	<u>ns</u> D	nte	<u></u>	s / . Adu	R		<u> </u>		_ P _ c	ROJE		0	<u> </u>	4, 1/	<u></u> _		3		-
engin					CIENTI									Para																
	FLAP	NNERS	• aur	WETO	Ka		US.	·52	<u>sori</u> Ri	2.m i	<u>a</u> /	4	ovia	1. 1 1	Oh	n l	Pine	n k	Con el	_ 0 1 c	HECK	ED E	v	Da.	<u>а</u>	۲۲ ۱		101	110	 } r
				1	1 .		1	1	1				1	 		<u>, , , , , , , , , , , , , , , , , , , </u>							/	1				<u></u>		7
ng 242 ng 14				1	+			1						ļ 											i 1		-			
		Mo	st_	Cr	tice	1	<u>50i/</u>	1	rot	ile.	- ~	as.	er	real	ints	No		n t	ori	19	B-	23	 	ļ			 		ļ	_
		A+	B	-32	<u>.</u>		ma	4,	nu	<u>n</u>	M	\$E	W	a//	F	Rig	ht	is	<u> </u>	a pr	103	im	ate	4	2	9.5				
						1					1 1 1					V								 					-	1
		11	,		A	≓o	1			× .	4:	733.	5			*	Ace	ume	98	° T	unk	ack								
				1		1						(Í										1	U II	0	ens.c	1.1	L	1	
							t i			-		1	 			`	_/]2	suna		0112.	!!! !		nerr 	a en	<u></u>	ens.c	11.00	17.00		
					┉	z	7.9-	50	thank	Konin	<u> </u> †													<u> </u>		<u> </u>	 			
_55	8.4		0	 					N= W				-	<u> </u>	<u> </u>	5	· .		<u> </u>						 			ļ		
55	5.4		- pri	100 cm	tol (itan I		. 	0	120	Per l	ļ	<u> </u>	<u> </u>	[<u>2</u> H	ssur	ne	Inc	omj	bres	<u>sib</u>	den -	<u> </u>					<u> </u> -	
550	.4	2	Con	£.51V	\$ 5	anay	5.1	_	8	125	PCS	4	<u>5=1</u>	8 1	6 ×	<u>3</u> C	=	0.1	8	<u>a</u>	2	0	56		FH	VA -	NH	<u>I-c</u>	0-	ć
54	9	3	Coh	esi or	ness	Gra	le_l		X:	125	i pe	f	ĮŢ		*	<u>R</u> ī	<u>√</u> ~	75		N'÷	75	. <u>-</u>	70	= ;	300		Hw	A	<u> </u>	
						BE	DR.O	CK	<u></u>			,					→ [(-c ⁼	0.0	07.	, e	. = 1	0	- Se	e Ca	leu	ati	in 1	Bele	Ð
		*(0		sati		Par	ome	ters	a	re.	ost	ime	fiel	4															
					por		£ .		1	- · · ·				1 3	1					s			2	1			2	2	ł	-
·		L	10.30		<u>i par</u>	<u>- 1</u>	1912	110-1	<u> </u>		<u>}-</u>		1600	VAL	<u>(75</u>	<u>گەھت.</u>	DELD	<u> </u>	250		<u>200</u>		<u>//</u>		ag				2/4	i.
																· · .	_				0									-
		<u> Ih</u>	2	çan	her	ter	-P	စီမ	an		1-1	5AI	YK	<u> </u>	e gu	ires		'nρ	<u>uts</u>		36		<u> -C</u>	<u> </u>	and	le	٥			-
					yate											ł			15	w	e_	m	157	† (<u>a le</u>	Ju la	te	<u> </u>	 	
		e	ui	ral	ent	4	ons	oli	dat	ion	Dai	pim	ete!	<u>†s</u>	-f-	rom	<u> </u>						ļ			<u> </u>		<u></u>	ļ	
	· .	1	P	<u> </u>	<u> </u>	<u> </u>			. :		,		ļ	<u> </u>										1			 	ļ		
				1	****	*****	f-c	T			Sa	¥	e.	=	1.0	1	n	thi.	5 (ase					ļ		· .			-
		÷.,		مينكا			+e	a	1					h							2	2		<u> </u>			2	1		
				ч <u>,</u>				Ì.			0	=		+1	6			>	C	=	3		ĺ.	(fe		N.			
	-hand-sailingt- 1.				-	1		1				1	1) *			,										.		•
			Wh	<u> </u>	1.		300			h	=	2	7 ~		. 0	17														
			wn N	<u>40</u>	<u> C</u> _	<u> </u>	500	╧		<u>c</u>		301	2		.0	place	l	ese	<u> </u>	0.00	<u>p +</u>									
	 				 			 - 1					+				aterian idea				ļ		<u> </u>							_
			* <	<u>30il</u>	no	<u> </u>	<u>\$atu</u>	trat	Lo	ļ	-	[}	ļ.,	8		<u> </u>		pc a	f =		10	pef			<u> </u>	 	
		.) 	:: 		45	×.	; 	 		i	she	e.	- Xo		<u> </u>	+ 4)	<u> </u>		+.	18					ļ	 			-
			1	b	÷		Vd-		<u>† </u>	*		<u> </u>	 	ļ	 				 						- 		.	ļ		
	 ,			/ 			X	24	Í				1									***								_
	 		L	5	16	2.0.	110		-			1	-0 =	0.	56			{ { }		2	1 3 4						1			
				Ī		1	700	P		1 1) }																		10
			•		1						1		1		1			10	84"-	2	57"	1/1	2.	1		00		Ì		
		n. (Y	<u> </u>	~1	~			 		1 				A		_	1.5.1			<u></u>	<u>4 - </u>	<u> 2_/</u>	ير مدين ار سر معمد ال	<u> 0</u> ,	00	T.			•
j		27	<i>zere</i>	<u>nti</u>	<u>e-1</u>	24	111/	4 mi	mT		 	1	<u>ps</u>	54	4			 		6.7	9			; ; ;				-		.,
				1 1 1		<u> </u>	ļ				- un un m	 		<u>.</u>	 	0]			.	01			~		L	7		 	 	÷
		<u> </u>			, 		<u> </u>		 	-	 		DS	۽ (<u>2.7</u>	/0		4	1.6	b%					ok	4		 		
	. 100		transferation	ļ) 	ļ				ļ	ļ	 			un un 141 m		{ 		.			 	• •				 	: :
			}		1						-	- Contraction of the Contraction				l			t 5 5											

Shart 12 of 37 SNK 5-31-07 ment Analysis DAA 6/1/07

US 52 Ramp A MSE wall Settlement Analysis

ÚÄÄÄÄÄ ONE DIMENSIONAL SETTLEMENT ANALYSIS/Federal Highway Administration ÄÄÄÄÄ; INCREMENT OF STRESSES BENEATH THE END OF FILL CONDITION з 3 : SCI-823 US-52 Ramp A Client : TranSystems Corp Project Name : 52A 3 Project Manager : Nix File Name : 04/12/07 З Computed by : sjr Date з з з Settlement for X-Direction 3 З Embank. slope, x direc. = 0.10 (ft) Height of fill H 27.90 (ft) = 0.10 (ft) 33.50 (ft) 33.70 (ft) Unit weight of fill = 120.00 (pcf) y direc. ≕ з Embankment top width = Embankment bottom width = = 3348.00 (psf) = 558.40 (ft) з p load/unit area Э з Foundation Elev. 558.40 (ft) Э Ground Surface Elev. 543.90 (ft) Unit weight of Wat. = 62.40 (pcf) 3 з Water table Elev. = 3 3 3 COEFFICIENT UNIT SPECIFIC VOID LAYER WEIGHT з TYPE THICK. COMP. RECOMP. SWELL. GRAVITY RATIO N§. з (ft)(pcf) 3.0 120.00 1 INCOMP. 0.180 0.018 0.56 з 2 0.000 125.00 2.65 COMP. 5.0 3 0.007 0.000 125.00 1.00 з COMP. 6.5 0.000 2.65 з SOIL STRESSES SUBLAYER ELEV. MAX.PAST PRESS. INITIAL N§. THICK. (ft) (ft) (psf) (psf) INCOMP. 5.00 1 3 3 2 552.90 672.50 672.50 з з 3 547.15 1391.25 6.50 1391.25 3 з з 3 0.10~ 6.80 13.50 3 X = X = X = X = 20.20 Э Layer Sett. Stress Sett. Stress Sett. Stress Sett. Stress (psf) (psf) (psf) (in.) (psf) (in.) (in.) (in.) з 3 INCOMP. 1 INCOMP. INCOMP. INCOMP. з 23 1666.49 1666.49 3.75 855.03 2.47 1586.40 3.64 3.75 3 1529.55 0.09 834.71 1346.57 0.08 1529.55 0.06 0.09 з 2.52 3.72 3.84 3.84 Use 4 of Ramp 4= 14.85 З 26.90 33.60 X = X = я Stress Stress Sett. sett. Layer з (psf) (psf) (in.) (in.) 3 з INCOMP. INCOMP. 1 З 2 1586.40 2.47 3.64 855.03 з 3 1346.57 0.08 834.71 0.06 з 3 3.72 2.52 з з Aäääää Hit arrow keys to display next screen. <F8> Print. <F10> Main Menu Äääääù Page 1

A				r	7	7		(,	٢	.1		Δ						(<u> </u>			_			10		1-3		
ENG	INEERS PLAI	• ARCI	HITECT • SUR	rs • so veyo	CIENTI	STS PI	LIENT ROJE JBJE Pia	ст ст ст	1 SC All 1	24- -1- - 6	sten <u>827</u> 61c eft	15 5 U	Pon Pon Isliy	(p. 1+3 (4)	<u>moi</u> In	ath di	<u>)</u> 2016	<u>γρ</u>	<u>ass</u> iks	_ F _ S _ C _ C	Roje Heet Omp Hech	CT N NO. BY CED E	0. <u> </u>	1 5- DA)]2]] [] A	<u> </u>	DF DATE	03	<u>37</u> 5-25	<u>1.0</u>
1. 100 I 100	_	Fr							ļ ļ	 																				
1845 - 1840 - 1840			angar maaratay i	Л	tim	ate		kin	4	r.z	tio	n	e	- (07.	3 1	Sipa				, k			 						
, at the state of the state	14447 - 2447 - 24447 - 24447 - 24447 - 2444 1444 - 2444 -				a 61	[41m 91m				3.0		2 2		<u> </u>			Ţ	20.0	p;'	k
а. р.н		1 1	up ti	lif he	¥ -/	for	ces · 7		re le	j F f	re	foi	+ inc	lat	ion		2 pnl	Ļ.	e	lle	u a	6/2	u	p 1.	<i>4.</i>					
6444 4446 644																														
										 												·····								
ř :							 							 																
										· · · · · · · · · · · · · · · · · · ·																				
-																	-	· .												
	agenda ganta, ana									 										 	} 									
													-																	
																													Nort of the same of	
- syfet boot	, and [.e., and are					 					1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																

DRIVEN 1.0 Sheet 14 of 37 GENERAL PROJECT INFORMATION 51/K 05

51K 05-31-07 DAA 1/1/07

Filename: Project Name: SCI-823 Project Client: TranSystems Corp. Computed By: sjr Project Manager: Nix

Project Date: 05/29/2007

PILE INFORMATION

Pile Type: H Pile - HP12X53 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	13.00 ft
	- Driving/Restrike	13.00 ft
	- Ultimate:	13.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

			1.0		· · · · · · · · · · · · · · · · · · ·	
Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	14.00 ft	0.00%	120.00 pcf	2000.00 psf	T-79 Steel

		<u>ULTIMATE - SK</u>		SAN 5-	f 37 31-07/DAA 6/10
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin / Friction
0.01 ft 9.01 ft 13.99 ft	Cohesive Cohesive Cohesive	N/A N/A N/A	N/A N/A N/A	1165.00 psf 1165.00 psf 1210.94 psf	0.05 Kips 41.68 Kips 67.27 Kips
	• • • •	ULTIMATE - EN	· · · · · · · · · · · · · · · · · · ·		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 13.99 ft	Cohesive Cohesive Cohesive	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	17.74 Kips 17.74 Kips 17.74 Kips

ULTIMATE - SUMMARY OF CAPACITIES

sheet 16 of 37 05-31-07/ DAA 6/1/07 Total Capacity

0.01 ft 9.01 ft 13.99 ft

Depth

End Bearing

Skin Friction

0.05 Kips 41.68 Kips 67.27 Kips

17.74 Kips 17.74 Kips 17.74 Kips

17.78 Kips 59.42 Kips 85.01 Kips

									(\bigcirc										(\bigcirc										
Π	arts a		D			Z	CI	IENT	T.	ran	<u>یں۔</u>	ten n 2	<u>^s (</u>	200	<u>p c</u>	DD	<u>тс</u> И	<u>. D.</u>	9	~	_ P	ROJE	CT N	0. <u>1</u>	0121	<u>1-3</u>	670		<u>а</u> З	22	
	engin		ARCI NNERS			CIENTIS RS	SI	JBJEC	CT∑	hill	<u>ed ?</u>	shaf	ŧΞ								<u>v</u> c	OMP.	BY _		51]K		DATE	2/2	7-10	57
			ł			Ì	1	<u> 25 c</u>	52	<u>K</u>	<u>am</u>	<u>y</u>	<u>A</u>	1	! }	1	ł		1		_ C	HECK	(ED B	Y) <u>A</u> A(r		DATE		20-1	<u>07</u>
Π	1	[¥-7	Êro	~^	R	oe	<u> </u>	762	F }	عمة	λ'n	eų.	9	Lu =	5	45	5	Ps	; ()	M	- 	<u></u>	Vu	In) =	37	.58	MP,
LI	a. 100 pane, 1	 							 	e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 		<u> </u>) 		 	nr + 41		an - n an an			hà hào hao dei			} } {		í 			
	1 mm 4-1 mb			17	En	d 'Y	seor	~~~	<u>}_</u>	ap	aer	ty.	20	For	K	CD)	0=	- - (2-	100		ن ــــــــــــــــــــــــــــــــــــ	<u> </u>	75.	2	5	- \	0,		Pa)
Π			 	1	-	2 2 2 2 4	1 				 						1			$\frac{1}{2}$	-10~	51-	alle sheadhara								
\Box			 	 				 				, 	19	nya:	1	U.					ļ			i '	19 19			<u>199-</u>	02	5	
		· · · ·			 		1	 						1	1	1.	ST.			70,	51					 					
	party research		· ·											1	1	1	•7 ~						1	n				.			
												+	-	-																	
$\prod_{i=1}^{n}$												a.		9			-11	o		اتم	5		. C								-
			-									- -		<u>p</u> FS] ***							·		
UD	·							· 		-		5	άų		2	* ;- (BO	Lκ	sf												
	· .								F	2	De	<u>منع</u>		Use	, ,	a	= 40	D k	sç.	*	Re	duc	tion		for	Aŗ	; Ila	Leon	ь Ī	Pock	.
			-			C 4			7.]			, zh		<u> </u>				-							1	. *			**
					<u></u>)		de	4	Car		1						1 ·		1								-0+	5			
											Fr	4.9.8	=	<i>9.6</i>	5	Pa	To			<u>}</u>	5 2	.6	5F	<u>a</u>	E	P					
																												450		2,6	
					-															-1	į	ļ			÷		<u>}_</u>	14.	F)		
Π] 											 			80	63	<u>51</u>	\langle	16	54	6	\$1						,
[]													1 1 1 1 1 1		-	20	e	Lin	gor.	- 1	6-	F.Q	51			 					
		1 1 1					 	 		 				1		E.	=	16	 	5	5.	2-6	35		8	16		Psf			- maa - 10 maga
\square											+							(ŧ Ł		į 		L		Į					nt" "Bhashan
\square	sa m. m.				 	-	i 	-					 			1	ŧ •	i .	i	1	-	50	1	1	1	1			}		
	,aa.		• • • • • • • • •		 					* • • •	F		\mathcal{D}	esio		Use		Fall	= ;	3,7	50	-ps	f	F.R.	due	tion	.	fic	ack		an the Loca a
- []		 							-				 				 	[****					Ĥ	iqill	ace	ous	R	<u>ek</u>		de se con
	44 -str. 447 -) 								4- 440 4 May 104	 		1)					 	5 3 3	4 +	*					Nar II na saa

		8 .		_	_	-		_		(<i></i>	(\bigcirc										
\sim)				C	LIENT	r	Tra	254	iste	<u>m5</u>	C	<u>erp</u>	10	DDC	<u>)</u>	<u>D-'</u>	9	_ F	PROJI	ECT N	10.	0	121	- 30	704	03		1-07
E	ENGIN		5 • Al		ECT	S • SC /EYOF		STS P	ROJE	:СТ СТ	<u>5</u> נו	<u>55</u>	<u>82</u> 7	<u>3</u> Ra	Y	<u>art:</u> A	<u>smo</u>	Pie.	<u> </u>	y pa	155	_ S	HEET	FNO.			19 : Л Г	1		3	7	
		164			3010	12101		-		La	tera	illy	1	Dac	led		Dril	led	<	ha:	<u>f</u> †s	_ (CHEC	KED E	3Y	E	wi		DATE	Ē	-1-1	07
U	ĸ		dad	\$	h	ave.	be	en	proj	vide	4	Tom	Tn	Ins	45+	enes	lb	asa	4 u	son	Pr	elin	line	Ly.	des	sign	s	\$ 50	ruid	l_	ONL	\mathbf{r}
			Fac	<u>+</u> o	rel	1	La	Hei	41	<u> L</u>	oac		<u> </u>	27	1.07	Ł		A	ASI	I TO		las	e_		OR	I	-					
				*		oad	<u> </u>	ap	plic	4	at_	+0	<u>p_</u>	f.		lun	hn,	[di	ille	d :	sha	ff.	fe	2-1	ier	2	<u> </u>	ļ		, 		
				~	A	ssu	mic	<u>(:</u>	tha:	<u>t_</u> li	ster	al	10	adı	ing	<u> </u>	pp.	fized	4 	tel	evat	ion_	580	<u>.</u>	22	a	our	- JI	ound	sur	fac	e
		ť	112 y Hhie			enc Cile	oin	TU	ed ass	lin	d d	L.		6	-3-	H. r.	<u>18er</u> 11.	neol		<u>0</u> 0	e do	nos			126	p. [.	(ion 	segi bed	1600	14	
Π				2-15		<u> </u>								- <u>115-</u>		<u></u>	<u>end</u>			~~~		110	(**********	phd		<u> </u>	YEEL ;	42	-3-			
			tac	-ta	·ec		<u>. Xi</u> c	<u> </u>	On		fron	h	Car	le_	k	<u> </u>	ļ															
		.		-					<u> </u>		 																					
					. #		3	$\downarrow \Omega$	67)(10	<u>11.4</u>	<u>• -</u>	1 +	(1.	0)(681	<u>. 44</u>	<u>۶</u>	 ^		13	<u>05.</u>	4:									
			4	je		de	r e f	bod	+	ha f			su'		1		,		he	inc		in e			1.	2		2. 7/2	0027		1	,
			- f	- F				•	en p		í		- 2						5,15eri	oh-		2010	167.9						0001		rie -	
									-							[·			
rn · -			-		4			om	- Ju	Per			to			e/0	μ <u>-</u>	the.	g	*0U1	el	5	er-	fa cu	<u>م س</u>							
							Hss	<u>u rij</u>	e:		_	<u>54</u>		ia. 4°		<u>.c</u> .	8-	5ha	F1 8.			lor	00		1		. 					
										<u> </u> i	****	f.			KS.			, 	<u>~~~</u>	í.		4.5	1		<i>a i «</i> i							
										[<u> </u>		Ês				ps	i			Ē	=			×	104	ps,	2					
										 		· .				. 										ſ		 				
		•			-ŀ	*		BW?	1 .	be	lon	I 0				ļ	pace.		ro C	10	pck	- 5	ock	et								
nt					-		Hss	uM	<u>e.</u>			60 P:		lia. 1.7°		<u>. C.</u>	12	<u>5ha</u> #	f† 18			120					2					
U -						,				ļ	 	f.			ksi		<u>/ </u>		10	Gar	2 / =	0.K	5 k	80	100	<u>en</u>	r /					
												E		29 :	10	p:	i.			Ļ	=	3.	82	47	10	6	psi					
					-										ļ	 						,		 								
			In	file	-	<u>A</u>	<u>ssui</u> J ^p	med	<u> </u>	for	_ <u>a</u>	nali	<u> 5e</u>	5	_((5-3 D			чК							2	 					
U .						┣	¥ 54 [°]									<u> </u>		505				L		27.	02	<u> </u>	 					
	D	e pt	<u>н</u>		22				16	Ēx. (ягои	nd :	Surf	act		 							 	 	 							
		- 0						K					war																			
		96	1		-	_[1	silt.	1					4				u			psf	1	Vegl	ect	up	ser .	5']	 	
$ \zeta $		168	<u>к</u> -		-		60	 	bandy					<u>55</u>		5			Φ'=]												
	2	36	/ 						feel.	1			50						gu B				•	[(··· +···)
	-+ 		1 						101.	rtar	a 't	2				<u>}_</u> 4:	Sum	<u>.</u>	Ju.	<u>`</u>	(43	<u>ps</u> .	¥									aur 144
								1	1		·	· · · · ·																				

\Box									(\bigcirc										ł	\bigcirc										
		Û				7	C	LIENT		T	lan s	<u>iy s</u> .	<u>hem</u>	5	Cor	p /	10	Do	<u>7</u>	<u>D-9</u>	<u> </u>	PROJI	ECT N	10.	01	21-	30	70.0	3		
	ENGIN				TS • S RVEYO		S	roje Ubje	CT	U	55	2	Kar	nβ	H	t i	er_				(COMF	P. BY		51	9 K		DATE	5	.29	1-07
	r		1	1	1			La	+ <u>a.e</u>	all	<u> </u>	- 00	<u>d ec</u>	<u> </u>	Dra	110	<u>d</u>	51	na f	+5	_ (CHEC	KED E	ΒY	Gu	<u>u /</u>		DATE	6	-1	<u>07</u>
IJ		¥	11	 		<u> </u>			 		1					7		 	,				 		 		 				
	-1-2-2		NS NS	ing ist	+ 	nc	$\frac{a}{a}$	ore	nd	en 7	ion Xia	<u>e = 1</u> [loa	755 /5	umj	ati usi	ng	a	it.	col	5	p0	ssi dai	ble Vec	10	ha	4	54	ste	set .	
Π				0	1	-	1.0			1			 					1		· ""				,			1.			1.4	101
			*	Dr	lum illec	5	ha f	4 0	lian	etel		selo	U e	rou	nd	sar.	a ce Lace)	6	5	12). 1. C	170	riec.	> =	1.	7°/	re,		- <u>-</u>		/2
\bigcap			*	10	ĺ	Rock		ock	ct	sh	pale	/	be_	pn	o vie	led	1	40	re	sis.	4	lat	era.	1	loa	din	20				
			*	D	L. I.		Fro	m	<u>B-</u> .	34	>	19'	Ro	k	500	ke t	4	611	spi	ands	2	<u>}_</u>	leve	tio	<u>h</u>	52	5.	6.			
	-			V	sing	- f	facto	red	- 7 li	bad	5	ai	Fr	om	LP	r j le	an	aly	sis	N	e	06.	tair	:							
										$ \nu $	max	2	<u> </u>	38	6	<u> </u>	ļ														
			54	1						1	max	2	8	<u>80</u> .	31	(-f-	f		 		 									· 	
			24				 							 				 				 		 							
U)														<u>.</u>																	
\prod	·									 						 							<u> </u>	 							
			-				·																ļ								
																									 	·					
					 																		 	[
																	1	<u>}</u>					 	· • •				·			
\square		-													•																
							 													 			-		 						
										 									j			 		 							
					<u> </u>	 							<u> </u>									 									
					! 																										
$\left[\right]$										 											L										1449444 (mm m m m m
5							} 												. 	 											
	+					 			i 'i									,													fanoriale state. M
					1			· · ·																					- 144, 93 644		
				1		-														1											

Shut 2/of 37 SML 5-29-07 Factored Lateral Loads for drilled shaft analysis

Pier 1

1	
icture)	
stru	
for pier stru	
for	
critica	
Left (most o	
Left	
Pier 1	
from	
loading	
Assumes lo	

	actored Load	0.00	0.00	20.23	27.02	0.00	20.23	27.02	0.00	0.00	20.23	
		, "										
	H	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.0	00.00	
Loads	5	11.15	11.15	11.15	11.15	11.15	11.15	11.15	11.15	11.15	11.15	
2	ML	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	
	M	15.56	15.56	15.56	15.56	15.56	15.56	15.56	15.56	15.56	15.56	
	•.											
	H	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	
	ц	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	
	WL	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	
	×	0.0	0.0	1.0	0.3	0.0	1.0	0.3	0.0	0.0	1.0	
	2	1.3	1.3	1.3	1.3	1.3	1.25	1.25	1.3	1.3	1.2	
	AASHTO Load Case	_	B	=	=	≥	>	VI	VII	VIII	X	

Sheef 22 of 37 Vertical rxns (kips) DL from superstructure LL+I (from superstructure)

 Pier 1 Left column
 Pier 1 Right column

 684.44
 599.44

 191.46
 157.34

Horizontal (in longitudinal direction of bridge)) rxns (kips) Pier 1 Left column Pier 1 RIght column Long. Force 11.15 9.77 WL (wind on LL) 4.97 4.35 Wind (W) 15.56 13.62 Thermal (T) 0 0

no thermal force due to strip seal exp. joints at rear and forward abutment (integral pier will not have to carry any thermal forces due to expansion/contraction)

Remember....these effects are based on precursory analyses of the integral pier for Ramp A (2-span option)

Sheef 25 of 37 SAK 5- Ramp A Lat Analysis_Prelim Design.lpo &WT 6-	-31-07 -1-07
LPILE Plus for Windows, Version 5.0 (5.0.5)	
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method	
(c) Copyright ENSOFT, Inc., 1985-2004 All Rights Reserved	
This program is licensed to:	
S Riedy DLZ, Ohio Inc.	
Path to file locations: M:\proj\0121\3070.03\Stability Analyses\MSE Wa 52\Ramp A\Joint-Final\rear abutment\ Name of input data file: Ramp A Lat Analysis_Prelim Design.lpd Name of output file: Ramp A Lat Analysis_Prelim Design.lpo Name of plot output file: Ramp A Lat Analysis_Prelim Design.lpp Name of runtime file: Ramp A Lat Analysis_Prelim Design.lpp Name of runtime file: Ramp A Lat Analysis_Prelim Design.lpr	11s\∪S
Time and Date of Analysis	
Date: May 31, 2007 Time: 17:42:41 Problem Title	
New LPILE Plus 5.0 Data File	
	;
Program Options	: · ·
Units Used in Computations - US Customary Units, inches, pounds Basic Program Options:	
Analysis Type 3: - Computation of Nonlinear Bending Stiffness and Ultimate Bending Moment Capacity with Pile Response Computed Using Nonlinear EI	
Computation Options: - Only internally-generated p-y curves used in analysis - Analysis does not use p-y multipliers (individual pile or shaft action on - Analysis assumes no shear resistance at pile tip - Analysis for fixed-length pile or shaft only - No computation of foundation stiffness matrix elements - Output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p-y curves to be computed at user-specified depths	1у)
Solution Control Parameters:	

 $\left[\right]$

Ú

Ĺ

[]

	Sheet 26 of 37 SAR Ramp A Lat Analysis_Prelim Design.lpo 9447 - Number of pile increments = 100 - Maximum number of iterations allowed = 100	5-31-07 6-1-07
	- Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in	
	Printing Options: - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1	
	Pile Structural Properties and Geometry	
-		
	Pile Length = 660.00 in Depth of ground surface below top of pile = 324.00 in Slope angle of ground surface = .00 deg.	
	Structural properties of pile defined using 4 points	
	Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in lbs/Sq.in	
	10.000054.00000000417393.00002290.00003823700.2276.000054.00000000417393.00002290.00003823700.3276.000060.00000000636173.00002827.00003823700.4660.000060.00000000636173.00002827.00003823700.	
	Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of moment of inertia and modulus of are not used for any computations other than total stress due to combined axial loading and bending.	
$\prod_{i=1}^{n}$	Soil and Rock Layering Information	
	The soil profile is modelled using 4 layers	
	Layer 1 is stiff clay without free water Distance from top of pile to top of layer = 324.000 in Distance from top of pile to bottom of layer = 360.000 in	
	Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 360.000 in Distance from top of pile to bottom of layer = 432.000 in p-y subgrade modulus k for top of soil layer = .000 lbs/in**3	· · · ·
	p-y subgrade modulus k for top of soil layer = .000 lbs/in**3 p-y subgrade modulus k for bottom of layer = .000 lbs/in**3	
Ĺ]	NOTE: Internal default values for p-y subgrade modulus will be computed for the above soil layer.	
	Layer 3 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 432.000 in Distance from top of pile to bottom of layer = 500.400 in	
	Layer 4 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 500.400 in Distance from top of pile to bottom of layer = 1000.000 in Page 2	

Sheet 27 of 37 SAR 5-31-07 Gur 6-1-07

Ramp A Lat Analysis_Prelim Design.lpo

(Depth of lowest layer extends 340.00 in below pile tip)

is defi	ned using 8 p	tive unit weight of points				
Point No.	Depth X in	Eff. Unit Weight lbs/in**3		: ,		
1 2 3 4 5 6 7 8	$\begin{array}{r} 324.00\\ 360.00\\ 360.00\\ 432.00\\ 432.00\\ 500.40\\ 500.40\\ 1000.00\end{array}$.06900 .06900 .06900 .08100 .08100 .08100 .08100 .08100		· · · · · · · · · · · · · · · · · · ·		
;		· · · · · · · · · · · · · · · · · · ·				·
		Shear Strength				
Distrih	ution of shear	strength parameters	s with depth			
defined	using 8 poir	ITS				
defined	using 8 poir Depth X in		e of Friction Deg.	E50 or k_rm	RQD %	: 5
defined Point	Depth X	Cohesion c Angle				
defined Point No. 2 3 4 5 6 7 8	Depth X in 324.000 360.000 360.000 432.000 432.000 500.400 500.400	Cohesion c Angle lbs/in**2 12.15000 12.15000 .00000 1000.00000 1000.00000 2725.00000	Deg. .00 .00 30.00 30.00 .00 .00 .00			
defined Point No. 2 3 4 5 6 7 8 Notes: (1) Co (2) Va (3) De	Depth X in 324.000 360.000 360.000 432.000 432.000 500.400 500.400 1000.000 nesion = uniax lues of E50 ar fault values w	Cohesion c Angle lbs/in**2 12.15000 12.15000 .00000 1000.00000 1000.00000 2725.00000	Deg. .00 .00 30.00 30.00 .00 .00 .00 .00 .0	k_rm	%	

Sheet 28 of 37 SAK 5-31-07 Ramp A Lat Analysis_Prelim Design.lpo Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 1Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 27020.000 lbs .000 in-1bs 1305400.000 lbs Bending moment at pile head = Axial load at pile head == (Zero moment at pile head for this load indicates a free-head condition) Computations of Ultimate Moment Capacity and Nonlinear Bending Stiffness Number of pile sections = 2Pile Section No. 1 The sectional shape is a circular drilled shaft (bored pile). Outside Diameter 54.0000 In Material Properties: Compressive Strength of Concrete = Yield Stress of Reinforcement = Modulus of Elasticity of Reinforcement = 4.500 Kip/In**2 60. Kip/In**2 29000. Kip/In**2 Number of Reinforcing Bars = Area of Single Bar 4.00000 In**2 == Number of Rows of Reinforcing Bars = Cover Thickness (edge to bar center) 3.000 In = Unfactored Axial Squash Load Capacity = 10557.70 Kip Distribution and Area of Steel Reinforcement Row Area of Distance to Number Reinforcement Centroidal Axis In**2 In 1 4.000000 24.0000 2 8.000000 16.9706 3 8.000000 .0000 8.000000 4 -16.97065 4.000000 -24.0000 Axial Thrust Force = 1305400.00 lbs Bending Bending Neutral Axis Bending Maximum Moment Stiffness Curvature Strain Position in/in in-lbs 1b-in2 rad/in inches 1768625. 1.768625E+12 .00000100 .00016562 165.62183 Page 4

Sheet 29 of 37

SAK 5-31-07 EWT 6-1-07

	Ramn A	Lat Analysis	Prelim Design.	Ino SWT
8837326.	1.767465E+12	.00000500	.00027505	55.00926590
15852860.	1.761429E+12	.00000900	.00038572	42.85811234
18240467.	1.403113E+12	.00001300	.00047054	36.19545364
21176442	1.245673E+12	.00001700	.00055530	32.66472244
23731709.	1.130081E+12	.00002100	.00063584	30.27828598
26064042	1.042562E+12	.00002500	.00071351	28.54052353
28247168	9.740403E+11	.00002900	.00078898	27.20609665
30343427.	9.194978E+11	.00002300	.00086325	26.15923691
32372318.	8.749275E+11	.00003700	.00093663	25.31445694
34350153.	8.378086E+11	.00004100	.00100946	24.62087631
36290781	8.064618E+11	.00004500	.00108215	24.04780197
38175651	7.790949E+11	.00004900	.00115371	23.54517746
40049657.	7.556539E+11	.00005300	.00122621	23.13607407
41875550	7.346588E+11	.00005700	.00129762	22.76528549
43701248.	7.164139E+11	.00006100	.00137089	22.47359848
45474060.	6.996009E+11	.00006500	.00144233	22.18973923
47227203.	6.844522E+11	.00006900	.00151428	21.94604874
48692554.	6.670213E+11	.00007300	.00158411	21.70009232
49905845	6.481279E+11	.00007700	.00165343	21.47308731
51071027.	6.305065E+11	.00008100	.00172062	21.24216843
52220983	6.143645E+11	.00008500	.00178827	21.03844070
53354718.	5.994912E+11	.00008900	.00185638	20.85819626
53858898.	5.791279E+11	.00009300	.00191851	20.62913132
54213000.	5.588969E+11	.00009700	.00197551	20.36607742
54560142.	5.401994E+11	.00010100	.00203288	20.12753677
56868971	4.341143E+11	.00013100	.00247582	18.89940262
58209620.	3.615504E+11	.00016100	.00294029	18.26267624
59345159.	3.107076E+11	.00019100	.00343395	17.97881699
59541791.	2.694199E+11	.00022100	.00392966	17.78126907
Eactored (Nom	inal) Moment Ca	nacity at Con	crete Strain of	0 003 - 583

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 58346.96504 In-Kip

60.0000 In

Pile Section No. 2

The sectional shape is a circular drilled shaft (bored pile).

Outside Diameter

Material Properties:

Maceriar fropererest			· .
Compressive Strength of Concrete	=	4.500	Kip/In**2 Kip/In**2 Kip/In**2
Yield Stress of Reinforcement	=	60.	Kip/In**2
Modulus of Elasticity of Reinforcement	=	29000	Kip/In**2
Number of Reinforcing Bars	=	12	
Area of Single Bar	=	4.00000	In**2
Number of Rows of Reinforcing Bars	=	7	
Cover Thickness (edge to bar center)	=	3.000	In
Unfactored Axial Squash Load Capacity	=	13511.33	кір

Distribution and Area of Steel Reinforcement

Row Number	Area of Reinforcement In**2	Distance to Centroidal Axis In
1	4.00000	27.0000
2	8.000000	23.3827
3	8.000000	13.5000
		D = = =

Page 5

Sheet 30 of 37 SNK 5-31-07 Ramp A Lat Analysis_Prelim Design.lpo 9wT 6-1-07 -13.5000 -23.3827 -27.0000 $\begin{array}{c} 8.000000\\ 8.000000\\ 8.000000\\ 4.000000\end{array}$

Axial Thrust Force = 1305400.00 lbs

Bending Moment in-lbs	Bending Stiffness 1b-in2	Bending Curvature rad/in	Maximum Strain in/in	Neutral Axi Position inches	S			
283211 1414074 2063467 2555984 2980626 3373251 3748410 4110923 4465651 4814489 5155497 5494506 5826710 6155431 6482016 6802516 7068854 7301971 7437630 7566481 7693504 7818704 7944566 8064456 8135925 8183737 8486407 8697862 8806778 8806778	9. 2.828150E+12 5. 2.292742E+12 1. 1.966142E+12 8. 1.753310E+12 5. 1.606310E+12 6. 1.499364E+12 2. 1.417560E+12 1. 1.353228E+12 9. 1.301213E+12 4. 1.257438E+12 1. 1.221001E+12 0. 1.189124E+12 0. 1.189124E+12 0. 1.161402E+12 0. 1.187196E+12 3. 1.087516E+12 3. 1.087516E+12 3. 1.08853E+12 0. 1.018853E+12 0. 1.018854E+12 0. 1.018854E+12 0. 1.018854E+12 0. 1.018854E+12 0. 1.018854E+12 0. 1.018854E+12 0. 1.018854E+12 0. 1.01	2 .00000500 2 .00001300 2 .00001700 2 .00002100 2 .00002500 2 .00002500 2 .00003300 2 .00003300 2 .00003700 2 .00004100 2 .00004500 2 .00005700 2 .00006500 2 .00006500 2 .00006500 2 .00006500 2 .00006500 2 .00006500 2 .00008100 2 .00008100 2 .00008500 2 .00008500 2 .00008100 2 .00009300 2 .00010100 2 .00013100 2 .00013100	$\begin{array}{c} .00013926\\ .00026089\\ .00036470\\ .00045823\\ .00054603\\ .00054603\\ .00071337\\ .00079475\\ .00087557\\ .00095628\\ .00103589\\ .00111670\\ .00119646\\ .00127675\\ .00135862\\ .00135862\\ .00143938\\ .00151730\\ .00159357\\ .00166415\\ .00173246\\ .00173246\\ .00187037\\ .00194197\\ .00201094\\ .00207435\\ .00213520\\ .00260903\\ .00363190\\ .00419901\end{array}$	$\begin{array}{c} 139.2621\\ 52.1773910\\ 40.5224990\\ 35.2483749\\ 32.1195602\\ 30.0287246\\ 28.5348129\\ 27.4052810\\ 26.5325546\\ 25.8454513\\ 25.2656936\\ 24.8154830\\ 24.4174575\\ 24.0896987\\ 23.8354110\\ 23.5964584\\ 23.3430862\\ 23.0952072\\ 22.7965164\\ 22.4994278\\ 22.2369003\\ 22.0043563\\ 21.8198776\\ 21.6230392\\ 21.3850021\\ 21.1405563\\ 19.9162674\\ 19.2172622\\ 19.0151596\\ 19.0000534\\ \end{array}$	15 18 14 14 17 13 15 16 19 17 14 12 12 10 13 15 14 12 10 13 15 14 12 10 13 15 14 12 10 13 15 14 14 12 10 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 13 15 16 19 17 19 19 19 19 19 19 19 19 19 19 19 19 19			
Unfactored (In-Kip	Nominal) Moment	Capacity at Cor	icrete Strain o	of 0.003 =	86568.84551			
· .								
	Computed Values for Lateral	s of Load Distri Loading for Lo	bution and Def ad Case Number	lection	~			
Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 27020.000 lbs Specified moment at pile head = .000 in-lbs Specified axial load at pile head = 1305400.000 lbs								
	for this load i eflect. Moment y M		lope Total S Stress	Flx. Rig. EI	Soil Res p			

						Sheet 3	of 37	SAR 5-31-0	07
			Ramp /	A Lat Anal	ysis_Preli	m Design.] lbs/in**2	po	gus	76-1-07
	in 	in	lbs-in	lbs	Rad.	lbs/in**2	1bs-in**2	lbs/in	•
	0.000	.561388	1.35E-05	27020.	001791	570.044	1,77E+12	0.000	
	6.600	.549570	1.94E+05	27020.	001790	582.577	1,77E+12	0.000	
	13.200 19.800	.537758 .525954	3.88E+05 5.81E+05	27020. 27020.	001789 001787	595.111 607.643	1.77E+12	0.000	
	26.400	.514165	7.75E+05	27020.	001785	620.174	1.77E+12 1.77E+12	0.000	
	33.000	.502395	9.69E+05	27020.	001782	632.704	1.77E+12	0.000	
	39.600	.490649	1.16E+06	27020	001778	645.232	1.77E+12	0.000	
	46.200 52.800	.478932 .467248	1.36E+06 1.55E+06	27020. 27020.	001773 001767	657.757 670.280	1.77E+12 1.77E+12	$0.000 \\ 0.000$	
	59.400	.455602	1.74E+06	27020.	001761	682.799	1.77E+12	0.000	
	66.000	.443999	1.94E+06	27020.	001754	695.314	1.77E+12	0.000	
	72.600 79.200	.432444 .420941	2.13E+06	27020	001747	707.826	1.77E+12	0.000	
	85.800	.409496	2.32E+06 2.52E+06	27020. 27020.	001739 001729	720.333 732.835	1.77E+12 1.77E+12	0.000 0.000	
	92.400	.398112	2.71E+06	27020.	001720	745.332	1.77E+12	0.000	
	99.000	.386795	2.90E+06	27020.	001709	757.824	1.77E+12	0.000	
	105.600 112.200	.375550	3.10E+06 3.29E+06	27020. 27020	001698 001686	770.309 782.788	1.77E+12 1.77E+12	0.000	*
	118.800	.353293	3.48E+06	27020	001673	795.260	1.77E+12	0.000	
	125.400	.342291	3.67E+06	27020.	001660	807.725	1.77E+12	0.000	
	132 000	.331380	3.87E+06	27020.	001646	820.182		0.000	1997
	138.600 145.200	.320563 .309847	4.06E+06 4.25E+06	27020. 27020.	001631 001616	832.631 845.072	1.77E+12 1.77E+12	0.000	
	151.800	.299235	4.44E+06	27020.	001600	857.504	1.77E+12	0.000	1
	158.400	.288733	4.64E+06	27020.	001583	869.927	1.77E+12	0.000	
	165.000 171.600	.278346 .268077	4.83E+06 5.02E+06	27020 27020	001565 001547	882.340	1.77E+12	0.000	
•	178.200	.257932	5.21E+06	27020.	001527	894.743 907.135	1.77E+12 1.77E+12	0.000 0.000	
	184.800	.247915	5.40E+06	27020.	~.001508	919.214	1.77E+12	0.000	
	191.400	.238031	5.59E+06	27020.	001487	931,887	1.77E+12	0.000	
	198.000 204.600	.228286	5.78E+06 5.98E+06	27020. 27020.	001466 001444	944.246 956.593	1.77E+12 1.77E+12	0.000	
1	211.200	.209226	6.17E+06	27020.	001421	968.927	1.77E+12 1.77E+12	0.000	
	217.800	.199923	6.36E+06	27020.	001398	981.248	1.77E+12	0.000	1、111、111、111。 1213年(1111)が長年(
1	224.400 231.000	.190775 .181789	6.55E+06 6.74E+06	27020. 27020.	001374	993.557	1.77E+12	0.000	
	237.600	.172969	6.93E+06	27020	001323	1005.851 1018.132	1.77E+12 1.77E+12	0.000	
	244.200	.164320	7.12E+06	27020.	001297	1030.398	1.77E+12	ŏ.ŏŏŏ	
. ·	250.800	.155846	7.31E+06		001270	1042.649		0.000	
et di	257.400 264.000	.147552 .139443	7.50E+06 7.68E+06	27020. 27020.	001243 001214	1054.885	1.77E+12 1.77E+12	0.000	
	270.600	.131524	7.87E+06	27020.	001185	1079.311	1.77E+12	0.000	
, .*	277.200	.123798	8.06E+06	27020.	001156	841.902	1.77E+12	0.000	
	283.800 290.400	.116271 .108947	8.25E+06 8.44E+06	27020. 27020.	001125	850.775	1.77E+12	0.000	
	297.000	.101832	8.62E+06	27020.	001062	859.636 868.483	1.77E+12 1.77E+12	0.000 0.000	
	303.600	.094928	8.81E+06	27020.	001029	877.318	1.77E+12	0.000	
	310.200	.088242	9.00E+06	27020.	000996	886 139	1.77E+12	0.000	
	316.800 323.400	.081778 .075541	9.19E+06 9.37E+06	27020. 27020.	000962 000928	894.947 903.740	1.77E+12 1.77E+12	0.000 0.000	
	330.000	.069534	9.56E+06	25138.	000892	912.519	1.77E+12	-570.269	
	336.600	.063763	9.72E+06	21359.	000856	920.113	1.77E+12	-574.783	
	343.200 349.800	.058232 .052944	9.86E+06 9.97E+06	17554. 13730.	000820 000783	926.511	1.77E+12 1.77E+12	-578.250	
	356.400	.047901	1.01E+07	9893.967	000785	931.706 935.693	1.77E+12 1.77E+12	-580.624 -581.856	
	363.000	.043107	1.01E+07	7746.933	000708	938.470	1.77E+12	-68.761	
	369.600	.038562	1.02E+07	7296.039	000670	941.091	1.77E+12	-67.874	
	376.200 382.800	.034268 .030226	1.02E+07 1.03E+07	6854.357 6428.180	000632 000593	943.556 945.870	1.77E+12 1.77E+12	-65.969 -63.175	
	389.400	.026437	1.03E+07	6022.963	000555	948.039	1.77E+12	-59.618	
	396.000	.022902	1.04E+07	5643.318	000516	950.070	1.77E+12	-55.426	
					Page 7				

Page 7

594.000 600.600 607.200	000410 000325 000249 000183 000127 -8.06E-05 -4.33E-05 -1.39E-05 8.71E-06	1.04E+07 1.04E+07 1.05E+07 1.05E+07 1.05E+07 1.05E+07 1.06E+07 1.03E+07 9.77E+06 9.09E+06 8.29E+06 7.42E+06 6.51E+06 1.55E+06 1.02E+06 2.94E+06 2.94E+06 2.94E+06 1.02E+06 5.96E+05 2.61E+05 -3.69E+05 -3.69E+05 -3.69E+05 -3.69E+05 -3.69E+05 -3.62E+05	5293.008 4974.945 4691.188 442.938 4230.533 -19276. -60396. -90954. -1.13E+05 -1.27E+05 -1.35E+05 -1.39E+05 -1.32E+05 -1.32E+05 -1.32E+05 -1.21E+05 -1.21E+05 -1.21E+05 -1.21E+05 -1.21E+05 -1.22880. -22986. -14790. -32880. -22986. -14790. -3034.419 844.027 3626.818 5491.701 6605.850 7120.406 7167.219	ysis_Prelim 000477 000438 000399 000360 000281 000242 000242 000170 000137 000108 -8.20E-05 -5.94E-05 -4.03E-05 -2.44E-05 -1.19E-05 -2.44E-05 -1.41E-05 1.41E-05 1.41E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.44E-05 1.54E-06 3.24E-06 3.94E-06 3.00E-06	951.972 953.753 955.425 956.998 958.483 959.892 946.713 922.494 890.263 852.551 811.432 768.558 725.207 682.328 640.586 600.409 565.152 535.053 510.045 489.856 474.047 462.133 510.045 489.857 469.955 475.710 479.172 480.817 481.070 478.818 476.886 474.710 472.457	po 1.77E+12 1.	2480.089 2343.637 2138.468 1893.322 1630.691 1367.532 1116.033 884.386 677.517 497.769 345.501 219.615 118.005 37.921 -23.735	-07 -07
580.800 587.400 594.000 600.600 607.200 613.800 620.400 627.000 633.600 640.200 646.800 653.400 660.000	000127 -8.06E-05 -4.33E-05 -1.39E-05 8.71E-06 2.58E-05 3.84E-05 5.45E-05 5.45E-05 5.97E-05 6.41E-05 6.81E-05 7.20E-05	-3.93E+05 -3.62E+05 -3.21E+05 -2.75E+05 -2.27E+05 -1.80E+05 -1.36E+05 -97157. -63639. -36584. -16619. -4267.272 0.000	3626.818 5491.701 6605.850 7120.406 7167.219 6857.337 6280.866 5507.871 4590.064 3563.057 2449.048 1259.821 0.000	9.23E-06 7.73E-06 6.32E-06 3.94E-06 3.00E-06 2.25E-06 1.66E-06 1.22E-06 9.20E-07 7.33E-07 6.34E-07 5.95E-07 5.87E-07	481.070 480.299 478.818 476.886 474.710 472.457 470.252 468.190 466.343 464.763 463.487 462.545 461.963 461.762	1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12 1.77E+12	497.769 345.501 219.615 118.005 37.921 -23.735 -70.169 -104.520 -129.721 -148.402 -162.812 -174.766 -185.606 -196.158	
capacity	and pile i	esponse us	analysis sing nonlir	makes compunear bending	stiffnes	s that the	e moment e above	- ,

capacity and pile response using nonlinear bending stiffness that the above values of total stress due to combined axial stress and bending may not be representative of actual conditions.

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection	=	.56138794 in	
	=	00179055	
Maximum bending moment		10563233 lbs-ir	n
Maximum shear force	=	-138626.85694 lbs	
Depth of maximum bending moment	=	435.60000 in	
Depth of maximum shear force	=	475.20000 in	
Number of iterations	==	7	
Number of zero deflection points	=	2	
Maximum bending moment Maximum shear force Depth of maximum bending moment Depth of maximum shear force Number of iterations		10563233. lbs-ir -138626.85694 lbs 435.60000 in	ר

51K 05-31-07 GW7 6-1-07

Ramp A Lat Analysis_Prelim Design.lpo

Sheet 33 of 37

Summary of Pile-Head Response(s) Definition of Symbols for Pile-Head Loading Conditions: y = pile-head displacment in M = pile-head moment lbs-in V = pile-head shear force lbs S = pile-head slope, radians R = rotational stiffness of pile-headin-lbs/rad Type 1 = Shear and Moment, Type 2 = Shear and Slope, Type 3 = Shear and Rot. Stiffness, Type 4 = Deflection and Moment, Type 5 = Deflection and Slope, Load Boundary Boundary Axial Pile Head Pile-Head Pile Head Type Condition Condition Deflection Load Moment Shear 1 2 lbsin in-1bs 1bs 1 V= 27020. M= 0.000 1305400. .5613879 1.0563E+07 -138627. The analysis ended normally. Page 9

Shaet 34 of 37 5-31-07 6-(-07 SIK Depth = 324 - 360; Stiff Clay w/o free water Depth = 500.4 - 1000; Strong Rock Depth = 432 - 500.4; Strong Rock Depth = 360 - 432; Sand

Lateral Deflection (in)

Shat 35 of 37 Sqll 5-31-07 GWT 6-1-07 -0.1 -0.05 0.05 0.15 0.2 0 0.1 0.25 0.3 0.35 0.4 0.45 0.5 0.55 ശ 9 15 20 25 Depth (ft) 8 35 4 45 50 55 ⊽ Case 1 60

Shear Force (kips)

