

STRUC	TURAL	ENGINE	ERING
	NOV 0	1 2006	
	SM 🗆 RZ 🖸	TJK 🗆 AW 🗖	
AD	DAG 🗆 SS 🛛		FILE

SCI-823-0.00

PID No. 77366

S.R. 823 RAMP A (NB) OVER

OHIO RIVER ROAD (CR-503)

STRUCTURE TYPE STUDY SUBMITTAL

Prepared for: OHIO DEPARTMENT OF TRANSPORTATION DISTRICT 9 650 EASTERN AVE. CHILLICOTHE, OHIO 45601

OCTOBER 31, 2006

Prepared by:

TABLE OF CONTENTS

Table of Contents

.

1.	Introduction	1
2.	Design Criteria	1
3.	Subsurface Conditions and Foundation Recommendation	1-2
4.	Roadway	2-4
5.	Proposed Structure Configurations	4-7
6.	Recommendations	. 8
APPEI •	NDIX A Cost Comparison Summary (2 Alternatives)	5 Sheets
APPEI • •	NDIX B Preliminary Site Plan – Alternative 2 - Preferred (Sheet 1 of 4) Framing Plan (Sheet 2 of 4) Typical Transverse Section (Sheet 3 of 4) Fill Limits Investigation (Sheet 4 of 4)	4 Sheets
APPEI •	NDIX C Preliminary Vertical Clearance Calculations	2 Sheets
	NDIX D Preliminary Site Plan – Alternative 1 (2 Sheets)	2 Sheets
	DIX E Preliminary Subsurface Exploration Bridge and MSE Retaining Walls	

BRIDGE TYPE STUDY NARRATIVE

1. Introduction

TranSystems is providing engineering services to the Ohio Department of Transportation for the design of new overpass structures that will carry the proposed S.R. 823 ramps over Ohio River Road at the U.S. 52 interchange. This bridge type study will address the overpass structure on Ramp A, which carries traffic from westbound U.S. 52 to northbound S.R. 823. As requested by the Scope of Services, a Structure Type Study report is to be submitted before any plan development. The purpose of this report is to investigate various span arrangements and superstructure and substructure types in order to determine the most appropriate and economical structure type that will meet the project requirements. An initial Structure Type Study report dated 7/15/2005 was submitted to the Department and comments, dated 9/20/2005, were in turn received by Transystems. However, since these dates, the overall project has experienced a change in profile – the original project profile presented in the Preferred Alternative Verification Report (PAVR) submitted July 2005 has been altered in order to reduce the fill heights over culverts and to rebalance the earthwork along the entire project length. This revised project profile was approved 2/15/2006 by the Department.

Although the earthwork-based revisions altered most of the project profile, they did not affect the horizontal alignment and vertical profiles of Ramps A and B at the U.S. 52-S.R. 823 interchange. Ramp B was adjusted horizontally eastward to provide proper clearance for future railroad tracks along the Norfolk Southern Railway. This, in turn, forced an adjustment in the alignment of Ramp A. Furthermore, to compensate for the high skew at which Ramp A crosses over Ohio River Road, the profile of Ramp A was raised to provide additional superstructure depth and sufficient vertical clearance. Such action was needed to stiffen the girders and thus minimize the differential deflections (and distortions) that can arise amongst the girders of a highly skewed superstructure during deck pour and service life. The profile grade of Ramp A was therefore updated to a 900' vertical curve with PVI at Station 41+00.00, $g_1 = 4.95\%$ and $g_2 = -0.88\%$ (as compared to the original profile grade vertical curve which had a 989' length, PVI at Station 43+62.00, g₁ = 3.50% and g₂ = -0.50%). Due to this profile revision, the elevation of the proposed Ramp A overpass structure was lifted approximately 8' to 9' over that originally specified in the July 2005 PAVR. This causes an increase in the height of built-up embankments as well as proposed MSE walls. Furthermore, the 9/20/2005 ODOT comments to the original 7/15/2005 Structure Type Study point out construction and design related problems/limitations associated with structures on large skew. As a result of these large skew issues and the changes in alignment and profile, the bridge types for the proposed S.R. 823 Ramp A were reevaluated. This follow-up Structure Type Study presents the results of these reevaluations as alternative bridge types. Two (2) alternatives are evaluated in this study for construction of the proposed Ramp A overpass. Each alternative is evaluated with regard to estimated construction cost, projected maintenance costs, horizontal and vertical clearances, constructability, and maintenance of traffic. Discussion of these alternatives is presented later in this report.

2. Design Criteria

The proposed structure types are designed according to the current version of the Ohio Department of Transportation Bridge Design Manual and the 2002 AASHTO Standard Specifications for Highway Bridges, 17th Edition. Horizontal clearances (clear zone width and horizontal sight distance) and vertical clearances are based on the Ohio Department of Transportation Location and Design Manual, Volume One – Roadway Design.

3. Subsurface Conditions and Foundation Recommendation

DLZ Ohio, Inc. performed the subsurface exploration for the proposed Ramp A and prepared preliminary bridge foundation recommendations which were presented in Section 3 and Appendix E of the original 7/15/2005

Structure Type Study report. An updated Subsurface Exploration report, dated 10/16/2006, has since been prepared by DLZ Ohio, Inc. and is presented in Appendix E of this Type Study. In summary, DLZ recommends three possible solutions for supporting the Ramp A overpass abutments:

why pipe into bedrock? why not steel piles?

- 1) pipe piles placed in prebored holes 12 inches larger than the diameter of the pile and a minimum of 5' deep into bedrock:
- 2) drilled shafts socketed a minimum of 5' into competent bedrock; and,

3) spread footings bearing in fill Because the Ramp A overpass is located within a horizontal curve (see Sections 4 and 5 below), pipe piles or drilled shafts will be best suited to resist any lateral load effects due to this curvature. Furthermore, excessive uplift forces and lateral earth pressures are not anticipated at this site. Based on this information, DLZ's recommendations, and economics, TranSystems consequently believes pipe piles are the best foundation type for the abutments.

Preliminary MSE wall evaluations were performed by DLZ Ohio. Inc. as well and are presented in the Preliminary Subsurface Exploration report of Appendix E. These wall evaluations reveal that MSE walls can be used at the rear and forward abutment locations of Alternatives 1 and 2. DLZ anticipates that the MSE wall at the forward abutment will bear on or near bedrock whereas the MSE wall at the rear abutment will bear on either native soils or compacted granular fill (CMS Item 304) if loose, soft, or compressible soils are encountered at this location. Please refer to Appendix E for further information and details regarding MSE wall evaluations.

4. Roadway

The purpose of this project is to construct a new bypass state route – S.R. 823 – around the town of Portsmouth Ohio. The proposed alignment for S.R. 823 will carry two lanes of traffic, 15 plus miles in either direction, from an interchange with U.S. 52 just east of Portsmouth to another interchange with U.S. 23 north of Portsmouth in Valley Township. The proposed Ramp A bridge over Ohio River Road is part of the U.S. 52-S.R. 823 interchange and will carry northbound traffic from U.S. 52 to S.R. 823. Because this bridge is a ramp bridge, it will consist of one 16'-0" travel lane. The right and left shoulder widths on this bridge will be 8'-0" and 6'-0", respectively. The bridge deck will be 33'-0" out-to-out with 1'-6" right and left straight face deflector parapets (SBR-1-99). The baseline construction of Ramp A will also serve as the profile grade line and is located at the inside edge of pavement.

Because the proposed Ramp A bridge is positioned within a horizontal curve, its deck will be superelevated. The superelevation rate and layout are based on Figure 202-7E of the ODOT Location and Design Manual, Volume One – Roadway Design (using a degree of curve of 2º 15' and design speed of 60 mph) and Figure 205 of the ODOT Bridge Design Manual, respectively. Using these design references results in a superelevation rate of 0.056 ft/ft (5.6%) across the ramp travel lane. Furthermore, horizontal and vertical sight distances, in accordance with the design standards, have been provided over the proposed ramp bridge for all alternatives considered. The existing U.S. 52 and Ohio River Road will remain on their current horizontal and vertical alignments and their cross-sections, in the vicinity of Ramp A, will remain unchanged. Note that further discussion regarding the profile of the proposed ramp structure may be found in Section 5 of this report.

Vertical and Horizontal Design – As previously explained in this report, the vertical alignment of the ramp structure is dictated by vertical clearance over existing Ohio River Road. Ohio River Road is classified as an Urban Minor Arterial roadway. According to the ODOT Location and Design Manual, Volume One – Roadway Design, Figure 302-1E, a preferred vertical clearance of 17'-0" (minimum of 16'-6") must be provided over Ohio River Road. Each alternative considered for the proposed Ramp A overpass provides more than the preferred 17'-0" clearance.

Due to the existing and proposed conditions along both edges of Ohio River Road, a horizontal lateral clearance of 11'-8" minimum from edge of traveled way (i.e., edge of traveled lane) to face of obstruction should be maintained. This 11'-8" clearance applies to both edges of Ohio River Road and is derived from the following information:

- The existing Ohio River Road is classified as an Urban Minor Arterial Street. Field inspection/evaluation of the site identified a posted speed limit of 45 mph. However, Figure 104-2E of the ODOT Location and Design Manual, Volume One – Roadway Design, recommends a design speed of 40-50 mph for an arterial street. Consequently, a *design speed of 50 mph is used*.;
- 2. Due to the "urban" conditions at this site, there are no ditches located off of Ohio River Road. In addition, it is intended that Type D barriers will be used/positioned off the sides of Ohio River Road. Using the arterial functional classification for Ohio River Road and a design speed of 50 mph in Figure 301-4E of the ODOT L & D Manual, Volume One (this figure is used to define lane and shoulder widths of urban roadways), the minimum curbed shoulder width for Ohio River Road is 10' which is from edge of traveled lane to toe/face of barrier. Note as well that Figure 302-1E of the ODOT L & D Manual, Volume One points out that for an arterial street, the horizontal lateral clearance under a bridge is a function of Figure 301-4E.
- Footnote F of Figure 302-1E indicates that, if necessary, the 10' minimum curbed shoulder width may be reduced to 8'. This particular reduction, however, will not take place at the site in question – using a 10' width will ease any future widening of Ohio River Road.
- 4. According to Figure 302-1E, the horizontal lateral clearance for an arterial street under a new bridge is the sum of the curbed shoulder width (from Figure 301-4E) and barrier clearance. The barrier clearance is obtained from Figure 603-2E of the ODOT L & D Manual, Volume One. For the proposed Type D barriers that are to be used along the outside shoulder edges of Ohio River Road, the minimum barrier clearance is 20" which is also the width of a Type D barrier. Combining the 10' curbed shoulder width and the 20" minimum barrier clearance results in the 11".8" minimum horizontal clearance.

Please note that for each alternative of the Ramp A overpass presented in this updated Structure Type Study report, the substructure and MSE wall layouts satisfy this 11'-8" clearance.

Drainage Design – The profile of the Ramp A overpass structure is on a positive grade and lies within a vertical curve whose high point is beyond the forward abutment (see Section 5 for profile information). Storm water runoff will drain from this high point towards the rear abutment. Superelevation due to horizontal curvature will also force drainage toward the right shoulder. However, the skew at which the Ramp A overpass crosses Ohio River Road makes it difficult to position scuppers in the bridge deck, especially along the right shoulder near the rear abutment – scuppers in the bridge deck will drain directly onto Ohio River Road (and its paved shoulders) and any drainage piping/plumbing connected to the bottom of the scuppers cannot be properly supported. Consequently, the collection of storm water runoff will be addressed off the bridge – catch basins will be positioned ahead of the forward abutment to prevent as much runoff as possible from draining onto the structure. Note that the type and layout of the drainage system will be investigated during the TS&L stage.

Utilities - No utilities will be placed on the bridge. However, lighting and ITS conduits will be provided if necessary.

Maintenance of Traffic - While the Ramp A overpass is under construction, traffic will be maintained on the existing Ohio River Road. It is anticipated that there will be limited closures during construction, primarily for beam setting.

5. Proposed Structure Configurations

Alignment & Profile: The proposed horizontal geometry for the Ramp A overpass structure is defined by a horizontal curve that is part of a spiral-curve-spiral alignment. The spiral portions of this alignment are well outside the overpass limits, so the parameters that define the pertinent horizontal curve portion are as follows: P.I. = Station 44+40.37, Δ (angle of intersection) = 34°25'56.25" Rt., D_c (degree of curve) = 2°15'00", R (radius) = 2546.48', T (tangent length) = 789.05', L (length of curve) = 1530.32', E (external distance) = 119.45', P.C. = Station 36+51.32, and P.T. = Station 51+81.64. The proposed profile for this same ramp structure is located on the inside edge of pavement which also serves as the baseline construction of Ramp A. This profile lies within a 900' vertical curve with P.V.I. at Station 41+00.00, g₁ = 4.95% and g₂ = -0.88%. The horizontal and vertical geometry for all alternatives considered are the same.

Several roadways are closely aligned in the proposed U.S. 52-S.R. 823 interchange. These are the existing U.S. 52, the existing Ohio River Road, the proposed Ramp A carrying traffic from westbound U.S. 52 to northbound S.R. 823, and the proposed Ramp B carrying traffic from southbound S.R. 823 to eastbound U.S. 52. The close proximity of these roadways and their differences in elevation at various locations warrant the use of MSE walls to satisfy both grading continuity and safe/proper embankment limits. MSE walls will be required not just along the roadway portions of Ramps A and B, but also at the abutments of the respective overpass structures. However, the proposed alignment of Ramp A causes the Ramp A bridge to cross Ohio River Road at a very high skew angle (approximately 70° left forward). It is known that a large skew can cause numerous construction problems for a bridge regardless of whether it is on a tangent alignment or within a horizontal curve (refer to ODOT BDM Section 302.2.7). In addition, MSE walls do not perform well and should not be utilized on structures with significant acute skews - ODOT stipulates that the maximum direction change for the face of an MSE wall should be 90 degrees (if possible) and that acute corners should be avoided (see Supplemental Specification 840). As a result of these criteria, substructure units, including MSE walls, for the Ramp A overpass structure should be oriented at skews of 30 degrees or less. Combining these lower skews with the 11'-8" minimum horizontal clearance along the shoulders of Ohio River Road results in the need of a long structure to overpass Ohio River Road. Because a pier cannot be placed on Ohio River Road, the resulting Ramp A overpass must consequently consist of a long, single span. The alternatives considered in this type study are essentially variations of this long, single span structure.

Structure: As per the Scope of Services, several bridge types and alternates were investigated as part of this type study. A total of two (2) alternatives were considered and are outlined in the following Structure Type Alternative Table:

STRUCTURE TYPE ALTERNATIVE TABLE												
Structure Type Alternative	1	2										
Superstructure Type Description	125" web, Single-Span Steel Plate Girders A709 Grade 50W (dog-legged at splices)	122" web, Single-Span Steel Plate Girders A709 Grade 50W (dog-legged at splices)										
Proposed Beam Spacing	3 Spaces @ 9'-2" <u>+</u>	3 Spaces @ 9'-2" <u>+</u>										
No. of Spans	1	1										
Abutment Type	Rear and Fwd. Abut.: Stub Type behind MSE wall	Rear and Fwd. Abut.: Stub Type behind MSE wall										
No. of Piers	0	0										
Pier Type	N/A	N/A										
Substructure Orientation	30°00'00" LF (w/respect to Reference Line)	0°00'00" (w/respect to Reference Line)										
Approx. Bridge Length	215'-8"	233'-5 ³ / ₁₆ "										
Approx. Structure Depth Slab Haunch Beam Total	8.75" 2" 130.625" 141.375" (11.781')	8.75" 2" 124.9375" 135.6875" (11.307')										

Alternative Discussion:

Alternative 1

Span configuration: Alternative 1 is a long, single–span bridge with abutments located behind mechanically stabilized earth (MSE) walls. The abutments and MSE walls are oriented at a 30°00'00" left forward skew with respect to the reference line that runs from centerline of bearing to centerline of bearing. If MSE walls with turnback sections are not utilized along the Ramp A overpass, embankments with 2:1 spill-through-slopes will need to be constructed. Such embankments would encroach onto Ohio River Road and interfere with the Ramp B structure (see diagram in Appendix B). The use of MSE walls (with proper turnbacks) consequently permits proper embankment construction and allows grading and elevation requirements to be successfully coordinated amongst the proposed and existing roadways of the U.S. 52-S.R. 823 interchange. MSE walls are positioned to provide the 11'-8" minimum horizontal clearance required along the shoulders of Ohio River Road. Positioning the MSE walls in this manner and providing a minimum distance of 3'-6" between the back face of MSE wall panels and the centerline of front row of abutment piles (refer to ODOT BDM Section 204.6.2.1 and Fig. 331) results in an overall bridge length of 215'-8" from centerline of bearing to centerline of bearing. Note that this length is measured along the centerline of survey and construction of Ramp A.

Substructure:

I. <u>Abutments</u>: Due to the horizontal curvature, a conventional, or stub-type, abutment must be used at both the rear and forward abutments (refer to ODOT BDM Section 205.9). Turnback wingwalls will be used at the rear and forward locations and all abutment and wingwall details will follow ODOT Standard Drawing A-1-69.

From Section 3 earlier in this report, it was recommended that pipe piles be used to support the abutments. According to DLZ, these piles are to be placed in prebored holes 12" larger than the diameter of the pile and embedded in rock sockets that are 5' deep into bedrock. Precursory load analyses reveal that both the rear and forward abutments may be founded on 16" diameter pipe piles with a design capacity of 90 tons per pile and placed in 28" diameter sockets.

II. Piers: none.

Superstructure:

I. <u>Girders and Deck</u>: The superstructure for this alternative consists of 4-welded steel plate girders, Grade 50W, with 125" deep webs and an 8³/₄" thick deck (which includes a 1" monolithic wearing surface). The deck width is 30'-0" from toe-to-toe of parapet and has an overall width of 33'-0". Although this structure consists of a single-span, its length warrants the use of girder splices which allows for the fabrication of shorter, less costly girder segments. Such girder segments are easier to transport and will facilitate/simplify superstructure erection. Furthermore, the plate girders will be dog-legged to accommodate the horizontal curvature of the bridge. Dog-legging permits fabrication of straight girder segments. The straight girder segments will be dog-legged at the splice points and placed parallel to one another between splices. Erection of the girders in this manner results in a center-to-center girder spacing of 9'-2"± (spacing between splice points actually varies from 9'-0 ³/₁₆"± to 9'-4 ⁷/₁₆"± - refer to the framing plan for Alternative 1). With such spacing, the 4-welded steel plate girders discussed above will satisfy the HS-25 (Case I) and Alternate Military Loading as well as a Future Wearing Surface loading of 60 psf.

The 125" web depth is needed to control the differential deflections between adjacent girder lines at coincident locations such as crossframes. Large skews and horizontal curvature – both of which are present on the Ramp A overpass - are significant sources of differential deflections in a superstructure and placement of deck concrete on a superstructure with such characteristics can induce, due to excessive differential deflections, web and flange distortion as well as out-of-plane bending of the girders (refer to ODOT BDM Section 302.2.7). Preliminary design efforts for the Ramp A overpass generated 4-plate girders, each comprised of a 105" deep web, 1.5" thick top flange, and 1.5" to 1.8125" thick bottom flange. Differential deflections between interior girders with these dimensions, however, exceeded the 0.5" limit specified in ODOT BDM 302.2.7. Consequently, the superstructure was stiffened to reduce these differential deflections. One option considered was adding an additional girder line (for a total of 5). This resulted in an undesirable solution – although a web deeper than 100" was required to limit differential deflections below 0.5", the problem with this solution was the required use of an uneconomic girder spacing of approximately 7', well below the recommended 9' minimum spacing of ODOT BDM 205.6. Other possible options/solutions included implementing the recommendations of AASHTO/NSBA Steel Bridge Collaboration document G 12.1-2003 "Guidelines for Design for Constructability" which addresses differential deflections through rotation checks at bearings and detailing/erecting steel for full dead load fit. In addition, TranSystems staff have investigated deck pours for a variety of skewed structures and designed temporary bracing to prevent girder rotation and crossframe overstressing. However, these solutions only address construction issues and do not address service life issues that may arise due to the large skews and/or horizontal curvature. Ultimately, from economic, structural, and serviceability

What is diff. Attlection for 105" web? is it more than 1"? standpoints, it was deemed that the best way to stiffen the superstructure was to increase the depth of the 4 original girder lines. Providing 4 girder lines, each comprised of a 125" deep web, a 25" x 2.75" top flange, and a 29" x 2.75"-2.875" bottom flange not only limited the differential deflections between adjacent girder lines to below 0.5", it also satisfied the 17'-0" preferred vertical clearance over Ohio River Road and provided sufficient structural capacity to support the appropriate design loads.

II. <u>Expansion Devices and Bearings</u>: Since there are no fixed bearings on this single-span structure, a preliminary evaluation of expansion devices involved using the overall bridge length of 215'-8" as the expansion length. Section 306.3.3 of the ODOT Bridge Design Manual and ODOT Standard Drawing EXJ-4-87 reveal that a 4" strip seal expansion joint can be used at both the rear and forward abutment. Note that this result is based on a simple preliminary evaluation of the bridge system and ignores, for now, the effects of horizontal curvature. In addition, a preliminary evaluation of bearings was performed. AASHTO Method A was used to identify laminated elastomeric bearings that can support the vertical reactions at the abutments, horizontal displacements due to thermal expansion/contraction, and rotational displacements due to applied dead and live loads. Consequently, laminated elastomeric bearing type for Alternative 1.

The initial bridge construction cost for Alternative 1 is estimated to be \$5,880,000 in year 2008 dollars. The present life cycle maintenance costs for this alternative are estimated to be \$1,356,000, resulting in a total estimated ownership cost of \$7,236,000 in year 2008 dollars.

Alternative 2

Span configuration: Alternative 2 was investigated in an effort to further reduce the skew of the Ramp A overpass. This alternative has a similar horizontal layout as Alternative 1, except that the rear and forward abutments and respective MSE walls are oriented at a 0°00'00" skew with respect to the reference line. Such a skew is ideal for a horizontally curved structure – it minimizes torsional effects and distortions (and thus differential deflections) on the I-shaped plate girders. However, this same skew, when utilized with the required 11'-8" horizontal clearance along the shoulders of Ohio River Road, will increase the length of the Ramp A overpass. The resulting centerline of bearing-to-centerline of bearing length for this alternative is 233'-53/16" (measured along the centerline of survey and construction of Ramp A).

Substructure: Except for the orientation (skew), the substructure units and foundations used in Alternative 2 are identical to those in Alternative 1.

Superstructure: Alternative 2 is identical to Alternative 1 except for the skew and the use of 4-welded steel plate girders, Grade 50W, with 122" deep webs, 24" x 1.25" top flanges, and 32" x 1.25"-1.6875" bottom flanges. Girders with this depth provide sufficient capacity for a 233' single-span structure whereas girders with a web depth below 120" are insufficient. In accordance with ODOT BDM 306.3.3 and ODOT Standard Drawing EXJ-4-87, a 3" strip seal expansion joint can be used at both the rear and forward abutment (based on a simple preliminary evaluation of the bridge system). As with Alternative 1, laminated elastomeric bearings are recommended as the bearing type.

The initial bridge construction cost for Alternative 2 is estimated to be \$5,730,000 in year 2008 dollars. The present life cycle maintenance costs for this alternative are estimated to be \$1,466,000, resulting in a total estimated ownership cost of \$7,196,000 in year 2008 dollars.

6. Recommendations:

Based upon the above information and discussions, TranSystems recommends **Structure Type Alternative 2**, which is a single-span structure comprised of A709 Grade 50W plate girders with 122" deep webs (girders are dog-legged at splice locations) and stub-type abutments behind MSE walls (see Appendix B for the Site Plan and Structure Details).

Alternative 2 is preferred, and thus recommended, based on the following items:

- 1. The lower skew angle minimizes/reduces the number of construction problems (such as girder distortions during deck pour) and thus simplifies construction;
- 2. The shorter web depth, and thus shorter superstructure, improves vertical clearance over Ohio River Road;
- 3. The shorter superstructure is less costly to erect/construct;
- 4. The lower skew angle will help reduce the number of serviceability issues (such as girder distortions, out-of-plane bending, etc.) that may arise over the life of the structure;
- 5. Alternative 2 has the lower total relative ownership cost of the two alternatives considered.

APPENDIX A Cost Comparison Summary

 $\left[\right]$

SCI-823-0.00 - PORTSMOUTH BYPASS RAMP A (NB) OVER OHIO RIVER ROAD - US 52 INTERCHANGE,

STRUCTURE TYPE STUDY

By: JRC Checked: MSL Date: 10/23/2006 Date: 10/30/2006

ALTERNATIVE COST SUMMARY

Alternative No.	Span Arra No. Spans	ngement Lengths	Total Span Length (ft.)	Framing Alternative	Proposed Stringer Section	Subtotal Superstructure Cost	Subtotal Substructure Cost	Structure Incidental Cost (16%)	Structure Contingenc Cost (20%)
1	1	215.66	215.66	4~ Welded Dog-legged Plate Girders	125" Web PG Grade 50W	\$1,444,000	\$2,778,000	\$675,500	\$979, 500
2	1	233.43	233.43	4~ Welded Dog-legged Plate Girders	122" Web PG Grade 50W	\$1,132,000	\$2,983,000	\$658,400	\$954,700

NOTES:

l

Ù

 \Box

Ш

1. Structure incidental cost allowance includes provision for structure excavation, porous backfill, sealing of concrete surfaces, structural steel painting, bearings, and crushed aggregate slope protection costs.

2. Estimated construction cost does not include existing structure removal (if any), which is common to all alternatives.

ire ency D%)	Total Alternative Cost	Superstructure Life Cycle Maintenance Cost	Total Relative Ownership Cost
00	\$5,880,000	\$1,356,000	\$7,236,000
00	\$5,730,000 (80,000 2.6° (0	\$1,466,000 (4 700	\$7,196,000 50 0.5 0

SCI-823-0.00 - PORTSMOUTH BYPASS RAMP A (NB) OVER OHIO RIVER ROAD - US 52 INTERCHANGE, STRUCTURE TYPE STUDY - STEEL GIRDER ALTERNATIVES- SUPERSTRUCTURE

By: JRC Checked: MSL

Date: ####### Date:

SUPERSTRUCTURE

Alternative No.	Span Arraı No. Spans	ngement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Expansion Joint Cost	Proposed Stringer Section	Structural Steel Weight (Pounds)	Structural Steel Cost	Subtotal Superstructure Cost
1	1	215.66	215.66	218	282	\$168,800	\$70,800	\$45,100	\$26,200	125" Web PG Grade 50W	940,100	\$1,132,700	\$1,444,000
2	1	233.43	233.43	235.43	305	\$182,600	\$76,600	\$45,100	\$22,700	122" Web PG Grade 50W	664,800	\$801,000	\$1,132,000

						COST SUPPORT CALCULATIO	ONS		
Deck Cross-Sectional Area:									
^p arapets: <u>No.</u> Parapets 2	Indivi <u>Area (s</u> 4.2	<u>sq. ft.)</u>	Parapet Area <u>(sq. ft.)</u> 8.52			<u>Structural Steel</u> <u>Unit Costs (\$/lb.):</u>	Cost <u>Ratio</u>	Year <u>2004</u>	Annual <u>Escalation</u>
Split Median Barriers 0	4.5		0.00			Rolled Beams - Grade 50	n/a	\$0.74	3.5%
Slab: Alt. 1 Alt. 2	<u>T (ft.)</u> 0.73 0.73	<u>W (ft.)</u> 33.00 33.00	Slab <u>Area</u> 24.1 24.1	Haunch & <u>Overhang Area</u> 2.4 2.4	Total Concrete Area <u>(sq. ft.)</u> 35.0 35.0	Level 4 Plate Girders - Grade 50W level 5 Plate Girders - Grade 50W	n/a n/a	\$1.05 \$1.20	3.5% 3.5%
Note: Deck width is out to 10% of deck area a	out				33.0	Reinforced Concrete Approad Unit Cost (\$/sq. yd.): Length = 30 ft. Area = 110 sq. yd.	th Slabs (T=17 Width = 3		
C/QA Concrete, Class QSC Init Cost (\$/cu. yd):	2					Year	Annual	Year	
Year <u>2004</u>	Annual Escalation		Year <u>2008</u>			Approach Slabs \$185.00	Escalation	<u>2008</u> \$205.00	
Deck \$491.00 Parapets \$615.00 Veighted Average = Based on parapet and slab perce	3.5% 3.5%		\$563.00 \$706.00 \$598.00			<u>Expansion Joints</u> Unit Costs (\$/Lin.Ft.):	Cost	Year	Annual
f total concrete area							Ratio	<u>2005</u>	Escalation
						Modular Expansion Joints Strip Seal Expansion Joints	1.00 1.00	\$910.00 \$310.00	3.5%
Epoxy Coated Reinforcing S Jnit Cost (\$/Ib): Assume 285 Ibs of reinforcing ste		yard of de	ck concrete						
Year <u>2004</u>	Annual Escalation		Year <u>2008</u>						
Deck Reinforcing \$0.77	3.5%		\$0.88						

SCI-823-0.00 - PORTSMOUTH BYPASS RAMP A (NB) OVER OHIO RIVER ROAD - US 52 INTERCHANGE, STRUCTURE TYPE STUDY - STEEL GIRDER ALTERNATIVES -SUBSTRUCTURE

By: JRC Checked: MSL

Date: 10/25/2006 Date: 10/30/2006

SUBSTRUCTURE

Alternative No.	Span Arra No. Spans	ngement Lengths	Framing Alternative	Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Abutment & Wingwall Cost	Temporary Shoring Cost	Subtotal Substructure Cost
1	1	215.66	4~ Welded Dog-legged Plate Girders	125" Web PG Grade 50W	\$0	\$0	\$70,500	\$23,100	\$49,500	\$2,635,200	\$O	\$2,778,000
2	1	233.43	4~ Welded Dog-legged Plate Girders	122" Web PG Grade 50W	\$0	\$0	\$58,900	\$19,300	\$49,500	\$2,854,800	\$0	\$2,983,000

Shaft	
<u>ngth</u>	
<u>pport</u>	
horing Temp. Girder <u>a, ft.)</u> <u>Support (lump sum)</u>	
\$ - \$ -	
	Veer
	Year <u>2008</u>
	\$25.80
	\$20.00
00 3.5%	\$36.70
2(\$ - \$ - 004 Annual <u>Escalation</u> 50 3.5%

SCI-823-0.00 - PORTSMOUTH BYPASS RAMP A (NB) OVER OHIO RIVER ROAD - US 52 INTERCHANGE, STRUCTURE TYPE STUDY - STEEL GIRDER ALTERNATIVES - QUANTITY CALCULATIONS

By: JRC Checked: MSL

Diar Leastian	Longth	Cap Width Depth Area Volume I					Column						Footing					
Pier Location	Length	Width	Depth	Area	Volume	Width	Height	Area	# Column	Volume	Width	Depth	Area	# Footing	Volume	Total Volume		
Pier 1	0	0	0	0.00	0	0	0	0.00	0	0	0	0	0	0	0	(
Pier 2	0	0	0	0.00	0						0	0	0	0	0	(
Pier 3 Pier 4	0	0	0	0.00	0		1				0	0	0	0	0	(
Pier 4	0	0	0	0.00	0						0	0	0	0	0	(
Pier 5	0	0	0	0.00	0						0	0	0	0	0	(
Pier 6	0	0	0	0.00	0						0	0	0	0	0	(
Pier 7	0	0	0	0	0	0	0	0.00	0	0	0	4	0	0	0	(
Total (Cu.Ft.)					0					0	-				0	(
Total (Cu.Yd.)					0					0					0	(

COLUMN TO A LOSS	15-51	1000	1000	Pie	r Quant	ities A	lternat	e 2 (H	P-Piles T	ype Fou	Indatio	on)	5.43	AT ATTAC	and the second second	Autoración
Dias Lesstian	Lanath		C	Cap		Column						Footing				
Pier Location Length Width			Width Depth		Volume	Width	Height	Area	# Column	Volume	Width	Depth	Area	# Footing	Volume	Total Volume
Pier 1	0	0	0	0.00	0	0	0	0.00	0	0	0	0	0	0	0	C
Pier 2	0	0	0	0.00	0	0	0	0.00	0	0	0	0	0	0	0	C
Pier 3	0	0	0	0.00	0	0	0	0.00	0	0	0	0	0	0	0	C
Pier 4 Pier 5	0	0	0	0.00	0						0	0	0	0	0	C
Pier 5	0	0	0	0.00	0				· · · · · · · · · · · · · · · · · · ·		0	0	0	0	0	C
Pier 6	0	0	0	0	0	0	0	0.00	0	0	0	0	0	0	0	(
Pier 7																(
Total (Cu.Ft.)					0					0					0	(
Total (Cu.Yd.)					0					0				p	0	0

Section Services			12072			Abutm	ent Qu	antiti	es -Alter	nate 1	100	and the	iline"	and the state			
Abut Location	Length		Bac	kwall		Beam Seat						Footing					
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area		Volume	Width	Depth	Area	# Footing	Volume	Total Volume	
Rear Abut	39.1	1.75	12.5	21.88	855	4.75	2	9.50		371	6.75	3	20.3	1	792	2019	
Fwd. Abut	37.2	1.75	12.5	21.88	814	4.75	2	9.50		353	6.75	3	20.3	1	753	1920	
Total (Cu.Ft.)					1669					725					1545	3939	
Total (Cu.Yd.)					62					27					57	146	

Abut Location	Wall											
Abut Location	Height	Length	Area	Volume								
Rear Abut	20	39	780									
RA Wing (L)	18	956	17208									
RA Wing (R)	18	1020	18360									
Fwd Abut	22	39	858									
FA Wing (L)	28	131	3668									
FA Wing (R)	28	82	2296									
Total (Sg.Ft.)			43200									

Tem	porary C	offerd	ams								
Location	Wall										
Location	Height	Length	width	Area							
Pier 3	0	0	0	0							
Pier 4	0	0	0	0							
Pier 5	0	0	0	C							
Total (Sq.Ft.)				0							

er al anti-	Life	States and	たらの思			Abutm	ent Qu	antiti	es - Alter	nate 2	See Street	1001245	See H	1.500 3.50	Star Star	And Strephone
Abut Location	Length		Backwal	1				Beam	Seat				Foo	ting		Total Volume
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area		Volume	Width	Depth	Area	# Footing	Volume	
Rear Abut	33	1.75	12.5	21.88	722	4.25	2	8.50		281	6.5	3	19.5	1	644	1646
Fwd. Abut	33	1.75	12.5	21.88	722	4.25	2	8.50		281	6.5	3	19.5	1	644	1646
Total (Cu.Ft.)					1444					561					1287	3292
Total (Cu.Yd.)					53					21					48	122

Abut Location		W	all	
Abut Location	Height	Length	Area	
Abut Location	Wall			
	Height	Length	Area	Volume
Rear Abut	21	34	714	
RA Wing (L)	20	943	18860	
RA Wing (R)	20	1020	20400	
Fwd Abut	23	34	782	
FA Wing (L)	30	131	3930	
FA Wing (R)	30	70	2100	
Total (Sq.Ft.)			46800	

Tem	porary C	offerd	ams								
Location	Wall										
Location	Height	Length	width	Area							
Pier 3	0	0	0	C							
Pier 4	0	0	0	C							
Pier 5	0	0	0	C							
Total (Sq.Ft.)				0							

2.0.527652	Pile Quantities Alternate 1													
Location	Total Piles	Top Elev.	Bot Elev.	Furnished Length	Total Furn. Length (Ft)	Prebored Length	Total Prebored Length (Ft)							
Rear Abut.	12	571.5	535.0	40.0	480	33	396							
Fwd. Abut.	12	577	548	30.0	360	12	144							
Total	24				840	45	540							

Statute	Pile Quantities Alternate 2													
Location	Total Piles	Top Elev.	Bot Elev.	Furnished Length	Total Furn. Length (Ft)	Prebored Length	Total Prebored Length (Ft)							
Rear Abut.	12	571.5	535.0	40.0	480	33	396							
Fwd. Abut.	12	577	548	30.0	360	12	144							
Total	24				840	45	540							

Location	Wt.of girder	# Girders	Span Length	Total Weight
Span 1	1078	4	218	940016
Span 2	0	0	0	C
Span 3	0	0	0	0
Span 3 Span 4	0	0	0	C
Span 5	0	0	0	C
Span 6	0	0	0	C
Span 7	0	0	0	C
Span 8	0	0	0	C
Total				940016

Location	Wt.of girder	# Girders	Span Length	Total Weight
Span 1	706	4	235	664770
Span 2	0	0	0	C
Span 3	0	0	0	C
Span 4	0	0	0	(
Span 5	0	0	0	(
Span 6	0	0	0	(
Span 7	0	0	0	(
Span 8	0	0	0	(
Total				664770

Carden di Anc	an faith of		Sector Int	1. 25 A 1.		48" Drill	ed Shafts		10252			and the last of
Location	Load/gir der	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips)	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0		0	0	1.1	0	0	0	0.0	0
Pier 1	0	0	0	0	0	0	1.25	0	0	0	0.0	0
Pier 2	0	0	0	0	0	0	1.25	0	0	0	0.0	0
Pier 3	0	0	0	0	0	0	1.1	0	0	0	2.0	0
Pier 4	0	0	0	0	0	0	1.1	0	0	0	2.0	0
Pier 5	0	0	0	0	0	0	1.1	0	0	0	2.0	0
Pier 6	0	0	0	0	0	0	1.25	0	0	0	0.0	0
Pier 7	0	0	0	0	0	0	1.25	0	0	0	0.0	0
Fwd. Abut.	0	0	0	0	0	0	1.25	0	0	0	0.0	C
Total								0				and the second second

SCI-823-0.00 RAMP A (NB) OVER OHIO RIVER ROAD - US 52 INTERCHANGE, STRUCTURE TYPE STUDY

By:	JRC
Checked:	MSL

Date: 10/25/2006 Date: 10/30/2006

LIFE CYCLE MAINTENANCE COST

1

				51			22		Casting		A	ach Davement De	ourfeelee							
					Cost	ctural Steel Pai Number of	Total	Cost	Sealing Number of	Total	Cost	ach Pavement Re Number of	Total							
Alt.	Snan Ar	rangement	Fra	aming	Per	Maintenance	Life Cycle	Per	Maintenance	Life Cycle	Per	Maintenance	Life Cycle							
No.		Lengths		rnative	Cycle	Cycles	Cost	Cycle	Cycles	Cost	Cycle	Cycles	Cost							
1	1	215.66		d Dog-legged	\$387,000	2	\$774,000	\$101,248	2	\$202,495	\$0	0	\$0							
2	1	233.43	4~ Welded	Girders d Dog-legged Girders	\$421,600	2	\$843,200	\$109,640	2	\$219,280	\$0	0	\$0							
							Bridge Deck Over	ay (5)		8		Bridge Rec				Superstructure	Total		Total	
					Deck	s 6	Deck	Number of	Total	Deck	Deck	Deck	Deck	Number of	Total	Life Cycle	Initial		Relative	
Alt.		rangement Lengths		aming rnative	Demo & Chipping	Deck Overlay	Joint Gland	Maintenance Cycles	Life Cycle Cost	Concrete Cost (3)	Reinforcing Cost (3)	Joint Cost	Removal Cost	Maintenance Cycles	Life Cycle Cost	Maintenance Cost (1)	Construct Cost	ion	Ownership Cost	
No.	No. Spans	E Lengths	Alte	mauve	Chipping	Overlay	Giariu	Cycles	COSI	0051(0)	0031 (0)	COSt	0031	Cycles	0031	003((1)	0031		0001	
1	1	215.66	Plate	d Dog-legged Girders	\$21,600	\$26,200	\$6,759	1	\$54,559	\$168,800	\$70,800	\$26,121	\$58,900	1	\$324,621	\$1,356,000	\$5,880,00		\$7,236,000	
2	1	233.43		d Dog-legged Girders	\$23,400	\$28,300	\$5,869	1	\$57,569	\$182,600	\$76,600	\$22,684	\$63,800	1	\$345,684	\$1,466,000	\$5,730,00	00	\$7,196,000	
	Steel Painting:	<u>.</u>							Bridge Redeo						NOTES:	tenance costs assume a	75	vear structure life	, and are expressed	in present value
Structural Ste	el Area:		Total	Assumed Ave.	Nominal	Secondary	Total		Bridge Deck Jo	int Cost per foot:	Year	Annual	Year			tion year) dollars.	75 -5	real structure me	, and are expressed	in present value
	Web	No.	Span	Bot. Flange	Exposed Girder	Member	Exposed Steel			nsion Joint Including	2005	Escalation	2008							
	Depth (in.)	Stringers	Length (ft.)	Width (in.)	<u>Area (sq. ft.)</u>	Allowance	Area (sq. ft.)		Elastomeric Str		\$310.00	3.5%	\$343.70		See Superstruc	ture Cost sheet.				
Alt.1 Alt. 2	125 122	4 4	215.66 233.43	29.00 32.00	24,226 26,455	20% 20%	29,100 31,700		12021 12	Bridge Width	No. Joints									
Painting Cost	t per sq. ft.:								Alt. 1 Alt. 2	38.00	2 2					Cost Summary sheet.				
	Year 2005	Annual Escalation	Year 2008						Bridge Deck Re	emoval Cost:	7)					deck overlay at Year 25 an structures are painted or sea				
Prep.	\$6.75	3.5%	\$7.48								/				Assume comple	ete bridge replacement at Y	ear 75.			
Prime Intermed.	\$1.75 \$1.75	3.5% 3.5%	\$1.94 \$1.94							Deck Area (3) (sq. ft.)	Year 2008	Deck Removal Cost			5. Life cycle maint	tenance cost differences are	e assumed to be p	redominately a fi	unction of superstruc	ture maintenance costs.
Finish	\$1.75	3.5%	\$1.94						A.11. 2							substructure lifecycle mainte				
Total			\$13.30						Alt. 1 Alt. 2	7,117 7,703	\$8.28 \$8.28	\$58,900 \$63,800								
Superstruc	ture Sealing:				MSE WALLS										Resurface Perp	vement Resurfacing: petual Asphalt Pavement:				
PS Concrete		2.			Alt. 1 =	4800				Overlay (Item 848): SC Overlay Cost per sq.					Resurfacing Un	nits Costs:		Year	Annual	Year
72 Modified		+ ⊻ <u>Diag.</u>	No. Total		Alt. 2 =	5200			ana an t anan - Maara	and the actuality and done with	Year	Annual	Year					2004 \$0.98	Escalation	<u>2008</u> \$1.12
Bot. Flange	26	•	1 26.00 2 16.00							dified Concrete Overlay molition (1.25" thick)	2004 \$25.58	Escalation 3.5%	2008 \$29.35		Pavement Plan (Item 254)	ning, Asphalt Concrete, per s	sq. yd.	\$0.98	3.5%	\$1.12
Lower Fillets Web	9 9	9 12.73 16	2 18.00 2 25.46 2 92.00						Surface Prepar Using Hydrode	ation	\$22.85	3.5%	\$26.22		(1611 204)			Year	Annual	Year
Upper Fillets	3 11	3 4.24	2 8.49 2 22.36						Hand Chipping		\$37.07	3.5%	\$42.54		Asphalt Concre	ete Surface Course, per cu.	yd.	<u>2004</u> \$72.00	Escalation 3.5%	<u>2008</u> \$82.62
Top Flange Total Expose	2723 	4	2 <u>8.00</u> 198.31 i	n.					Bridge Deck M	SC Overlay Cost per cu					01 (3.1) (27.000) (3.2					
36" AASHTO										dified Concrete Overlay ness), Material Only	/ \$144.00	3.5%	\$165.24		Asphalt Resurfa	acing Costs: Approach	Approach			
	H Y	<u>V</u> <u>Diag.</u>	<u>No. Total</u> 1 18.00									Hand	Variable			Roadway Length (ft.) (4)	Roadway Width (ft.)		Wearing Course <u>1.) Thickness (in.)</u>	Wearing Course Volume (cu. yd.)
Bot. Flange	18	6	2 12.00							Deck Area (3)	Deck Area	Chipping	Thickness					<u>////oq./o</u>		
Lower Fillets		56 50 50 50 FC	2 16.98							<u>(sq. ft.)</u>	<u>(sq. yd.)</u>	<u>(sq. yd.)</u>	Repair (cu. yd.)		Alt. 1 Alt. 2	0.0 0.0	33.0 33.0	0	1.50 1.50	0.0 0.0
Web Upper Fillets		15 3 4.24	2 30.00 2 8.49						Alt. 1	7,117	791	20	18		rst. Z	5.0	55.5	v		0.0
Top Flange Total Expose		6	2 <u>12.00</u> 97.47 i	n.					Alt. 2	7,703	856	21	19							
PS Concrete			, na transfer							of deck area requires rer	5 5 0	4.5" (3.25" addition	nal removal).							
	No.	Total Span	Nominal Exposed Bear	Secondary m Member	Total Exposed Concret	•			Bridge Deck Jo	oint Gland Replacement	Cost per foot: Year	Annual	Year							
	Stringers	Length (ft.)		Allowance	Area (sq. yd.)	•			Elastomeric Sti	rip Seal Gland	2004 \$77.50	Escalation 3.5%	<u>2008</u> \$88.93							
Alt. 3	0	0.00	0	10%	0					replacement cost equal:										
Sealing Cost	per sq. yd.:	Year	Annual	Year																
Epoxy-Ureth:	ane Sealer	2004 \$9.68	Escalation 3.5%	2008 \$11.11																
				1997-9997-9997-9997																

APPENDIX B

Preferred Alternative Site Plan and Details

BORING LOCATIONS Important to the state of the								
TR-62 43:02.06 93.34 LT. 18:05.8 LT. TR-64 40:58.96 138.58 LT. TR-76 38:59.24 27.09 LT. BENCHWARK I BENCHWARK 2 (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) TRAFFIC DATA (ROUTE) CURRENT YEAR ADT (2010) - 6,700 00500 CURRENT YEAR ADT (2010) - 10,500 00500 CURRENT YEAR ADT (2030) - 10,500 00500 CURRENT YEAR ADT (2030) - 1,4T0 900000 PROPOSED STRUCTURE TYPE, SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS AT09 GRADE 50W WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTWENTS SPANS; 233'-5% C/C BEARINGS SPANS; 233'-5% C/C BEARINGS NOT DO TO		BOF	RING LOC	ATIONS	7			
TR-62 43:02.06 93.34 LT. 18:05.8 LT. TR-64 40:58.96 138.58 LT. TR-76 38:59.24 27.09 LT. BENCHWARK I BENCHWARK 2 (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) TRAFFIC DATA (ROUTE) CURRENT YEAR ADT (2010) - 6,700 00500 CURRENT YEAR ADT (2010) - 10,500 00500 CURRENT YEAR ADT (2030) - 10,500 00500 CURRENT YEAR ADT (2030) - 1,4T0 900000 PROPOSED STRUCTURE TYPE, SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS AT09 GRADE 50W WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTWENTS SPANS; 233'-5% C/C BEARINGS SPANS; 233'-5% C/C BEARINGS NOT DO TO		BORING No.	STATION	OFFSET	1	1	2	
BENCHMARK I BENCHMARK 2 (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) TRAFFIC DATA (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) TRAFFIC DATA (ROUTE) (URRENT YEAR ADT (2010) - 6,700 DESIGN YEAR ADT (2030) - 10,500 OURRENT YEAR ADT (2030) - 10,500 CURRENT YEAR ADT (2030) - 1,470 PROPOSED STRUCTURE (TO BE ORDER ADDITION OF STUD ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233' -5%6" C/C GEARINGS (C/C GEARINGS ROADMAY: 30' TOE TO TOE OF PARAPETS (LOADING FWS-60 PSF LOADING, MS-65 (CASE I) AMD ALTERNATIVE MILITARY (DADINGE ON WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: DG - 2*15'00" CURVE TO THE RIGHT WEARING SURFACE: WONDITHIC CONCRETE ALIGNMENT: DG - 2*15'00" CURVE TO THE RIGHT WEARING SURFACE: WONDITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: I. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN MORIZONTAL. NOTES: I. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN MORIZONTAL. NOTIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ALTON SEYOND BRIDGE LIMITS. <		TR-62	43+02.0	6 93.34 LT.		tom to	1111	
BENCHMARK I BENCHMARK 2 (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) TRAFFIC DATA (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) TRAFFIC DATA (ROUTE) (URRENT YEAR ADT (2010) - 6,700 DESIGN YEAR ADT (2030) - 10,500 OURRENT YEAR ADT (2030) - 10,500 CURRENT YEAR ADT (2030) - 1,470 PROPOSED STRUCTURE (TO BE ORDER ADDITION OF STUD ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233' -5%6" C/C GEARINGS (C/C GEARINGS ROADMAY: 30' TOE TO TOE OF PARAPETS (LOADING FWS-60 PSF LOADING, MS-65 (CASE I) AMD ALTERNATIVE MILITARY (DADINGE ON WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: DG - 2*15'00" CURVE TO THE RIGHT WEARING SURFACE: WONDITHIC CONCRETE ALIGNMENT: DG - 2*15'00" CURVE TO THE RIGHT WEARING SURFACE: WONDITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: I. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN MORIZONTAL. NOTES: I. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN MORIZONTAL. NOTIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ALTON SEYOND BRIDGE LIMITS. <		the second s				AGEN	CUU	
BENCHMARK I BENCHMARK 2 (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) (TO BE PROVIDED LATER) TRAFFIC DATA (ROUTE) (CURRENT YEAR ADT (2010) - 6,700 DESIGN YEAR ADT (2010) - 938 DESIGN YEAR ADT (2030) - 1,470 MM MM PROPOSED STRUCTURE PROPOSED STRUCTURE TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS A709 GRADE 50W WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233' - 5% " C/C BEARINGS ROADING FWS-60 PSF COADING FWS-60 PSF SUDOU VOIN WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: DC - 2* 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAYEMENT ELEVATIONS BEYOND BRIDGE LIMITS. WINT BIJOEE UTILLITIES: UTILLITIES: WINTH SUPPORT FOR PAYEMENT		1R-76	38+59.2	4 27.09 LT.	_	ESIGN	ETER DR	
TRAFFIC DATA (ROUTE) CURRENT YEAR ADT (2010) - 6,700 DESIGN YEAR ADT (2030) - 10,500 CURRENT YEAR ADT (2030) - 1,470 PROPOSED STRUCTURE TYPE: SINCLE-SPAN, 122" WEB STEEL PLATE GIRDERS ATOG GRADE SOW WITH COMPOSITE REINFORCED CONCRETE DEX STUD ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233' -5%6" C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING : HS-25 (CASE 1) AND ALTERNATIVE WILLITARY LOADING: HS-25 (CASE 1) AND ALTERNATIVE WILLITARY LOADING: HS-25 (CASE 1) AND ALTERNATIVE MILLITARY LOADING FYS-60 PSF SKEW: 00°00'O' WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0. 0.56 FT/T ACROSS LANE ALIGNWENT: Do - 2° 15'00" CURVE TO THE RIGHT WEAR ING SURFACE: MONOLITHIC CONCRETE APPROXCH SLABS: AS-1-81 (30' LONG) LATITUDE: INTE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LINUMUL VINTS. SHOWN ARE APPROXIMATE. <td colspan<="" td=""><td>BE</td><td>NCHMARK I</td><td></td><td>BENCHMAR</td><td>к 2</td><td></td><td>D PERIN</td></td>	<td>BE</td> <td>NCHMARK I</td> <td></td> <td>BENCHMAR</td> <td>к 2</td> <td></td> <td>D PERIN</td>	BE	NCHMARK I		BENCHMAR	к 2		D PERIN
TRAFFIC DATA (ROUTE) CURRENT YEAR ADT (2010) - 6,700 DESIGN YEAR ADT (2030) - 10,500 CURRENT YEAR ADT (2030) - 1,470 PROPOSED STRUCTURE TYPE: SINCLE-SPAN, 122" WEB STEEL PLATE GIRDERS ATOG GRADE SOW WITH COMPOSITE REINFORCED CONCRETE DEX STUD ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233' -5%6" C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING : HS-25 (CASE 1) AND ALTERNATIVE WILLITARY LOADING: HS-25 (CASE 1) AND ALTERNATIVE WILLITARY LOADING: HS-25 (CASE 1) AND ALTERNATIVE MILLITARY LOADING FYS-60 PSF SKEW: 00°00'O' WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0. 0.56 FT/T ACROSS LANE ALIGNWENT: Do - 2° 15'00" CURVE TO THE RIGHT WEAR ING SURFACE: MONOLITHIC CONCRETE APPROXCH SLABS: AS-1-81 (30' LONG) LATITUDE: INTE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LINUMUL VINTS. SHOWN ARE APPROXIMATE. <td colspan<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>							•
CURRENT YEAR ADT (2010) - 6,700 DESIGN YEAR ADT (2010) - 938 DESIGN YEAR ADTT (2010) - 938 DESIGN YEAR ADTT (2010) - 938 DESIGN YEAR ADTT (2010) - 1,470 PROPOSED STRUCTURE TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS AT09 GRADE SOW WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5%" C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING FWS-60 PSF SKEW: 00°00" OW WITH RESPECT TO THE REFERENCE LINE (ALSOS TE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Do - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN MORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILLITIES: </td <td>(TO BE</td> <td>PROVIDED LAT</td> <td>ER)</td> <td>(TO BE PROVIDE</td> <td>D LATER)</td> <td>DATE 10/30/06</td> <td>FILE NUMBER</td>	(TO BE	PROVIDED LAT	ER)	(TO BE PROVIDE	D LATER)	DATE 10/30/06	FILE NUMBER	
CURRENT YEAR ADT (2010) - 6,700 DESIGN YEAR ADT (2010) - 938 DESIGN YEAR ADTT (2010) - 938 DESIGN YEAR ADTT (2010) - 938 DESIGN YEAR ADTT (2010) - 1,470 PROPOSED STRUCTURE TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS AT09 GRADE SOW WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5%" C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING FWS-60 PSF SKEW: 00°00" OW WITH RESPECT TO THE REFERENCE LINE (ALSOS TE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Do - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN MORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILLITIES: </td <td></td> <td>Т</td> <td>RAFFIC L</td> <td>DATA</td> <td></td> <td>EWED RC</td> <td>UCTURE</td>		Т	RAFFIC L	DATA		EWED RC	UCTURE	
DESIGN YEAR ADT (2030) - 10,500 CURRENT YEAR ADTT (2030) - 1,470 PROPOSED STRUCTURE TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS ATOG GRADE SOW WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5% C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING FWS-60 PSF SKEW: 00°00'00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Do - 2°15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-I-81 (30' LONG) LATITUDE; LONGITUDE; NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILLITIES: UTILITIES:			(ROUTE)		I F	STR	
DESIGN YEAR ADTT (2030) - 1,470 PROPOSED STRUCTURE TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS ATO9 GRADE SOW WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5% C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING FWS-60 PSF SKEW: 00°00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-I-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILLITIES: UNDIGE NO.								
DESIGN YEAR ADTT (2030) - 1,470 PROPOSED STRUCTURE TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS ATO9 GRADE SOW WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5% C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING FWS-60 PSF SKEW: 00°00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-I-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILLITIES: UNDIGE NO.	-					NTN	EVISE	
TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS AT09 GRADE 50W WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5%6" C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING FWS-60 PSF SKEW: 00°00'00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-I-81 (30' LONG) LATITUDE: LONGITUDE: VOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS.						Ĺ	¢.	
TYPE: SINGLE-SPAN, 122" WEB STEEL PLATE GIRDERS AT09 GRADE 50W WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5%6" C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING FWS-60 PSF SKEW: 00°00'00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-I-81 (30' LONG) LATITUDE: LONGITUDE: VOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS.						CNED	P	
AT09 GRADE 50W WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY STUB ABUTWENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233'-5 ¹ / ₆ " C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING FWS-60 PSF SKEW: 00°00'00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: DG - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES: UTILITIES:	TYPE. CI				RDERS	DESIL	снес Р.J	
FOUNDED ON PILES AND MSE WALL EMBANKMENTS SPANS: 233' -5% C/C BEARINGS ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING: FWS-60 PSF SKEW: 00°00'00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS Sections. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS.	an same against suggesting							
ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING: WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPPROACH SLABS: AS-I-BI (30' LONG) LATITUDE: LONGITUDE: I. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS.						VTΥ	. 82	
ROADWAY: 30' TOE TO TOE OF PARAPETS LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING: HS-25 (CASE I) AND ALTERNATIVE MILITARY LOADING: WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2° 15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPPROACH SLABS: AS-I-BI (30' LONG) LATITUDE: LONGITUDE: I. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS.	10		LJ AND M	DE MALL EMDAMA	men 15	inoc	+ 14	
LOADING FWS-60 PSF SKEW: 00°00'0" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2°15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES: UTILITIES:						10	39	
LOADING FWS-60 PSF SKEW: 00°00'0" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2°15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES: UTILITIES:					LTADY	101:		
SKEW: 00°00'00" WITH RESPECT TO THE REFERENCE LINE (ALSO SEE FRAMING PLAN) SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2°15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: VIT - VITIC SUPERATIONS ARE SHOWN HORIZONTAL. NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. VITIC SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. VITILITIES:	LOADING:			LIERNAIIVE MIL	. I I ARY	SC	TA	
SUPERELEVATION: 0.056 FT/FT ACROSS LANE ALIGNMENT: Dc - 2°15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES: UTILITIES:							0, 0,	
ALIGNMENT: DG - 2°15'00" CURVE TO THE RIGHT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-1-81 (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:					L V			
APPROACH SLABS: AS-I-BI (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES: UTILITIES:	in the second second second second				r l	N		
APPROACH SLABS: AS-I-BI (30' LONG) LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES: UTILITIES:	WEARING	SURFACE: MON	OLITHIC (CONCRETE			923	
LATITUDE: LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:	APPROACH	SLABS: AS-1	-81 (30'	LONG)		AL.		
LONGITUDE: NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:								
NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:	LONGITUDE	51				1	- 22()	
HURIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:						AN	VN0	
HURIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:						Ы	-22 THB	
HURIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:						ш	S-S-ORI	
HURIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:		-				11	n c	
2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:			H FLAN D.	MENSIONS ARE .		S	DGI	
2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS SECTIONS. 3. THE PROPOSED PROFILE GRADE IS WITHIN BRIDGE LIMITS. SEE ROADWAY PLANS FOR PAVEMENT ELEVATIONS BEYOND BRIDGE LIMITS. UTILITIES:						RY	BRI P A	
UTILITIES:						NA	NAM	
UTILITIES:						M	2 F	
UTILITIES:	7				BB / DC F	17	2-2	
UTILITIES:						PRE	US	
	ELI	EVATIONS BEY	OND BRID	GE LIMITS.		1		
	UTILI	TIES:				-		
IN THE TS&L SUBMITTAL FOUNDATION DATA: ALL NEW PILES SHALL BE 16" DIA. CIP PILES AND HAVE A MAXIMUM CAPACITY OF 90 TONS I I I I I I I I I I I I I			TION WILL	BE ADDRESSED		0	8	
FOUNDATION DATA: ALL NEW PILES SHALL BE 16" DIA. CIP PILES AND HAVE A MAXIMUM CAPACITY OF 90 TONS I 4	IN THE	TS&L SUBMI	TTAL			0.0	366	
ALL NEW PILES SHALL BE 16" DIA. CIP PILES AND HAVE A MAXIMUM CAPACITY OF 90 TONS	FOUND	ATION DAT	<u>A:</u>			m'	12	
PILES AND HAVE A MAXIMUM CAPACITY OF 90 TONS	ALL N	EW PILES SHA	LL BE 16	" DIA. CIP		82	0	
			MAXIMUM	CAPACITY		-	110	
	UF 90	1005				SC	-	
						1	4	
						H	-	
						L		
						1		

LOCATION	STATION	θ	
⊈ BRG. R. ABUT.	STA. 39+16.89	N/A	
SPLICE I	STA. 39+65.91	2.06°	
SPLICE 2	STA. 41+01.30	2.06°	
⊈ BRG. FWD. ABUT.	STA. 41+50.32	N/A	

FROM	то
⊈ BRG. R. ABUT	SPLICE I
SPLICE I	SPLICE 2
SPLICE 2	€ BRG. FWD.

Π

 \square

 \Box

Π L

 \square

Ο

Ο

Ο

0

L

Ο

Ο

DETAIL "A" REFER TO STANDARD DRAWING EXJ-4-87

DESIGN AGENCY		57-07 PCR1METER CAUPE, SAFTE 240 DORTE, CHIC 42017
REVIENED DATE J.R.C. 10/30/06	STRUCTURE FILE NUMBER	
DRAWN R MTN	REVISED	
TSM DESIGNED	CHECKED R	РJР
TYPICAL TRANSVERSE SECTION - ALTERNATIVE 2	BRIDGE NO. US-52-XXXX	US-52 RAWP A TO NORTHBOUND S.R. 823
SC1-823-0.00	33222 UIG	LIU 11 JOO
3		$\left(\right)$

Ο

APPENDIX C Vertical Clearance Calculations

•

.

	Systems	Checked	By <u>MSL</u> By <u>MTN</u> ICAL CLEARAN	Date	10/31/06 10/31/06	Sheet No.	P403030064
Job Name	SCI-823-0.00						
				· · • • · · ·			
	- 4-125" Steel Plate	<u>Girders</u>				Point Location:	<u>A</u>
Adjstment for	Cross Slope						
	Commont	O	0//				
-	<u>Comment</u>	<u>Grade</u>	Offset (from PGI	_)	0.00000		
Profile grade	e line to critical pt.:	-0.056	x 6.47	-	-0.36232		
			Total Adjustment	=	-0.36		
Superstructur	re Depth						
	<u>Comment</u>	Depth (in)	<u>Depth (ft)</u>				·
	Deck Thickness:		0.73				
	Haunch:		0.17				
Gird	er or Beam Depth:	- 130.625	10.89				
- Chu	-	141.375	11.79				
			rstructure Depth (ft)	_	11.79		
		10121 0000	isudelate Depart (ity	-	11.10		
Vertical Clear	ance at Critical Po	int					
Vertical Clear	ance at Critical Po	<u>_</u>					
Vertical Clear		Statio	on @ Critical Point		39+70.04		
Vertical Clear	(Static Offset Locatic	on @ Critical Point	=	6.47' Rt.		
Vertical Clear	Profile	Static Offset Locatic e Grade Eleva	on @ Critical Point tion at Critical Point	=	6.47' Rt. 589.71		
Vertical Clear	Profile Adjustrr	Static Offset Locatic e Grade Eleva nent for Cross	on @ Critical Point tion at Critical Point Slopes to Beam CL	= = =	6.47' Rt. 589.71 -0.36		
Vertical Clear	Profile Adjustrr	Static Offset Locatic e Grade Eleva nent for Cross	on @ Critical Point tion at Critical Point	= = =	6.47' Rt. 589.71		
Vertical Clear	Profile Adjustrr	Static Offset Locatic e Grade Eleva nent for Cross Deck Elevatic	on @ Critical Point tion at Critical Point Slopes to Beam CL	= = =	6.47' Rt. 589.71 -0.36		
Vertical Clear	Profile Adjustm Top of	Static Offset Locatic e Grade Eleva hent for Cross Deck Elevatic Total St	on @ Critical Point tion at Critical Point Slopes to Beam CL on @ Critical Point	= = = =	6.47' Rt. 589.71 -0.36 589.35		
Vertical Clear	Profile Adjustm Top of Bottom of B	Static Offset Locatic e Grade Eleva hent for Cross Deck Elevatic Total St Beam Elevatic	on @ Critical Point tion at Critical Point Slopes to Beam CL on @ Critical Point uperstructure Depth on @ Critical Point	= = = =	6.47' Rt. 589.71 -0.36 589.35 -11.79 577.56		
Vertical Clear	Profile Adjustm Top of Bottom of B	Static Offset Locatic e Grade Eleva nent for Cross Deck Elevatic Total St Beam Elevatic op of Paveme	on @ Critical Point tion at Critical Point Slopes to Beam CL on @ Critical Point uperstructure Depth on @ Critical Point nt @ Critical Point	= = = =	6.47' Rt. 589.71 -0.36 589.35 -11.79 577.56 560.40	· · · · · · · · · · · · · · · · · · ·	
Vertical Clear	Profile Adjustm Top of Bottom of E To	Static Offset Locatic e Grade Eleva nent for Cross Deck Elevatic Total St Beam Elevatic op of Paveme Actual Vertical	on @ Critical Point tion at Critical Point Slopes to Beam CL on @ Critical Point uperstructure Depth on @ Critical Point nt @ Critical Point		6.47' Rt. 589.71 -0.36 589.35 -11.79 577.56		

[]

SR823 RampAoverUS52_updatedVertClrCalc.xls

Tra	n Systems 🔊	Made Checked		MSL MTN		<u>10/31/06</u> 10/31/06			P403030064
ð 									
b Name	SCI-823-0.00				Struct	ure			
escription	S.R. 823 Ramp B	OVER US 52			PID #	77366			
Alternatives	2 - 4-122" Steel Pla	te Girders				F	Point Location:	A	
Adjstment fo	or Cross Slope								
	<u>Comment</u>	Grade	Off	set (from PGI	`				
Drofilo grav				6.84	<u>-1</u>	-0.38304			
Frome grad	de line to critical pt.:	-0.000	X Toto						
			Tota	l Adjustment	=	-0.38			
Superstruct	ure Depth								
	Commont	Death (C)		D					
	Comment	Depth (in)		Depth (ft)					
	Deck Thickness:	8.75		0.73					
0	Haunch:	2		0.17					
Gir	der or Beam Depth:	124.9375		10.41					
		135.6875		11.31					
		l otal Supe	rstructu	ure Depth (ft)	=	11.31			
Vertical Clea	arance at Critical Po	int							· · · · · · · · · · · · · · · · · · ·
			_						
			_	ritical Point		39+68.95			
		Offset Locatio	_			6.84' Rt.			
		e Grade Eleva				589.68			
	-	ent for Cross				-0.38			
	Top of	Deck Elevation	on @ C	ritical Point	=	589.30			
		Total S	uperstr	ucture Depth	= _	-11.31			
	Bottom of I	Beam Elevatio	on @ C	ritical Point	=	577.99			
	-			William Dated	_	560 40			
		op of Paveme	-			<u>560.40</u> 17.59			
				al Clearance	=	17.59			
				al Clearance al Clearance	=	16.5			

APPENDIX D Preliminary Structure Site Plan

 \square

Ο

0

Ο

· · · · · · · · · · · · · · · · · · ·	· ····-	
LOCATION	STATION	8
⊈ BRG. R. ABUT.	STA. 39+21.78	N/A
SPLICE I	STA. 39+67.05	1.62°

FROM	то
€ BRG. R. ABUT	SPLICE I
SPLICE I	SPLICE 2
SPLICE 2	⊈ BRG. FWD.

 \square

 \square L

 \square

 \square \Box

 \square

 \square

 \Box \cup

Π

—

 \Box L

[]] L

APPENDIX E Preliminary Subsurface Exploration Bridge and MSE Retaining Walls

{ }

.

Report of:

Π

 $\prod_{i=1}^{n}$

Π

 $\left[\right]$

Preliminary Subsurface Exploration Bridge and MSE Retaining Walls US 52 Ramp A to Northbound SR 823 SCI-823-0.00 Portsmouth Bypass Scioto County, Ohio

Prepared for: TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, Ohio 43017

DLZ Ohio, Inc. 6121 Huntley Road Columbus, OH 43229 Phone: (614) 888-0040 Fax: (614) 436-0161

DLZ Job No. 0121-3070.03 October 16, 2006

Ohio Department of Transportation District 9

REPORT

OF

PRELIMINARY SUBSURFACE EXPLORATION

FOR

BRIDGE AND MSE RETAINING WALLS

US 52 RAMP A TO NORTHBOUND SR 823

SCI-823-0.00 PORTSMOUTH BYPASS

SCIOTO COUNTY, OHIO

For:

TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, Ohio 43017

By:

.

DLZ OHIO, INC. 6121 Huntley Road Columbus, OH 43229

DLZ Job. No. 0121-3070.03

October 16, 2006

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GENERAL PROJECT INFORMATION	1
3.0	FIELD EXPLORATION	2
	FINDINGS	2
4.0		2
		3
	4.2 Subsurface Conditions 4.2.1 Soil Conditions	3
		3
	4.2.2 Bedrock Conditions 4.2.3 Groundwater Conditions	4
	4.2.5 Groundwater Conditions	
5.0	CONCLUSIONS AND RECOMMENDATIONS	4
5.0	5.1 Bridge Foundation Recommendations	4
	5.1.1 Rear and Forward Abutments	4
	5.1.2 Piers	6
	5.2 Mechanically Stabilized Earth (MSE) Retaining Wall Recommendations	/
	5.2.1 MSE Walls: General Information	I
	5.2.2 MSE Wall Evaluations and Recommendations	ð
	5.2 MSE Wall Foundation Earthwork Recommendations	10
	5.4 Groundwater Considerations	10
6.0	CLOSING REMARKS	10

APPENDIX I

Structure Plan and Profile Drawings - Two (2) -11"x17" Boring Plan - 11"x17"

APPENDIX II

General Information – Drilling Procedures and Logs of Borings Legend – Boring Log Terminology Boring Logs – Two (2) Borings

APPENDIX III

Laboratory Test Results

APPENDIX IV

MSE Wall Global Stability Analysis Results MSE Wall Bearing Capacity and Stability Calculations MSE Wall Settlement Calculations Drilled Shaft – End Bearing and Side Resistance Calculations

REPORT OF PRELIMINARY SUBSURFACE EXPLORATION FOR BRIDGE AND MSE RETAINING WALLS US 52 RAMP A TO NORTHBOUND SR 823 SCI-823-0.00 PORTSMOUTH BYPASS SCIOTO COUNTY, OHIO

1.0 INTRODUCTION

This report includes the findings of the preliminary subsurface exploration, and the engineering evaluation of the foundation and mechanically stabilized earth (MSE) retaining walls for Ramp A of the US 52 interchange. The findings included in this report pertain to US 52 Ramp A to northbound SR 823 only. The findings of other structure evaluations will be submitted in separate documents.

The project consists in part of placing a bridge ramp structure for proposed US 52 over Ohio River Road (CR 503). The structure as planned, is a single-span structure using MSE walls to hold back the roadway embankments and contain the abutments.

The purpose of this exploration was to 1) determine the subsurface conditions to the depths of the borings, 2) evaluate the engineering characteristics of the subsurface materials, and 3) provide information to assist in the design of the structure foundations and the MSE walls. The exploration presented in this report was performed essentially in accordance with DLZ Ohio, Inc.'s (DLZ) proposal for the project.

The findings and recommendations presented in this report should be considered preliminary. After the bridge and ramp designs are refined, it will be necessary to drill additional borings in the area of the proposed structures in accordance with ODOT's specifications for subsurface investigations in order to finalize the MSE wall and foundation evaluations.

The geotechnical engineer has planned and supervised the performance of the geotechnical engineering services, considered the findings, and prepared this report in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are made as to the professional advice included in this report.

2.0 GENERAL PROJECT INFORMATION

It is understood that the plan location of the bridge structure for the proposed US 52 Ramp A over Ohio River Road (CR 503) has not changed from the approved location, as shown on the plan and profile drawing in Appendix I. It is understood that the MSE walls will be placed using two alternatives to hold back the roadway embankment for the proposed US 52 Ramp A. The first alternative (Alternative 1) involves placing the rear abutment of the MSE wall at station 39+20.60 and the forward abutment of the MSE wall at station 41+38.57. The second alternative (Alternative 2) involves placing the rear abutment of the MSE wall at station 39+16.89 and the

forward abutment of the MSE wall at station 41+50.32. Through discussions with TranSystems, it is known that a structure using a pier may be considered to shorten the span lengths. Considering this, section 5.1.2 provides information for this element.

Based upon the structure plan and profile drawing, it is assumed that the maximum height of the embankment/MSE wall at the rear and forward abutments for both alternatives will be approximately 28.2 and 34.0 feet, respectively. Those heights are based upon the maximum difference between the proposed grade of US 52 Ramp A and the approximate existing grade at the site as indicated on the structure plan and profile drawing.

The analyses and recommendations presented in this report have been made on the basis of the foregoing information. If the proposed locations or structural concept are changed or differ from that assumed, DLZ should be informed of the changes so that recommendations and conclusions presented in this report may be revised as necessary.

3.0 FIELD EXPLORATION

The field exploration consisted in part of two preliminary structural borings (TR-62 and TR-76). The borings were drilled between March 18 and 30, 2005. A boring plan is presented in Appendix I. Boring logs for borings TR-62 and TR-76 are presented in Appendix II. Information concerning the drilling procedures is also presented in Appendix II.

The boring locations were determined by representatives of DLZ. The surveyed locations and ground surface elevations of the borings (TR-62 and TR-76) were determined by representatives from Lockwood, Lanier, Mathias & Noland, Inc. (2LMN).

4.0 FINDINGS

4.1 Geology of the Site

The area of this structure is characterized by gently to steeply sloping topography rising from of the floodplain of the Ohio River. The project area is located in the Shawnee-Mississippian Plateau of the unglaciated portion of the Appalachian Plateau Physiographic Region. The Shawnee-Mississippian Plateau is characterized by Devonian aged to Pennsylvanian aged rocks and contains residual, colluvial, alluvial, and lacustrine soils.

The genesis of the soils varies across the site. Soils in the floodplain consist primarily of alluvium and alluvial terraces, generally composed of silty clay, coarse sand, gravel, and cobbles. Below approximately elevation 700, the soils on the hillsides are generally lacustrine deposits. Lacustrine soils in this area are commonly known as "Minford Silts" or the Minford Complex. These deposits were formed during the early to middle Pleistocene age when the northward flowing Teays River system was blocked by the southward advance of the Kansan aged ice sheets. As the glaciers advanced, the course of the Teays River was blocked south of Chillicothe and a large lake was formed from the impoundment of the waterways. As a result of the impoundment, vast quantities of sediments were deposited ranging from 10 to 80 feet in thickness, thinning towards the margins. Bedrock within the structure area is primarily sandstone of the Logan

Formation of Mississippian age. Bedrock of the Pennsylvanian Breathitt Formation can be found at the top of the slopes to typically above approximately elevation 770.

4.2 Subsurface Conditions

The following sections present the generalized subsurface conditions encountered by the borings. For more detailed information, refer to the boring logs presented in Appendix II. Laboratory test results are presented on the boring logs and also in Appendix III.

4.2.1 Soil Conditions

The results of this investigation indicated that soil conditions at the site were somewhat uniform. In general, the subsoil stratigraphy consisted of shallow surficial materials consisting of topsoil underlain by native cohesive and granular soil deposits and sandstone.

Boring TR-76 encountered 2 inches of topsoil underlain by natural cohesive soils. Borings TR-62 and TR-76 encountered natural cohesive soil deposits below the ground surface. The natural cohesive deposits consisted of very stiff to hard sandy silt (A-4a) and hard silt and clay (A-6a) and extended below the ground surface to approximate depths ranging between 3 and 8 feet, corresponding to approximate elevations between 547.1 and 556.1. The cohesive soil deposits in boring TR-76 were underlain by natural granular soils consisting of medium dense to dense sandy silt (A-4a) to an approximate depth of 8 feet, corresponding to elevation 540.1 where it was underlain by rock. In boring TR-62, rock was encountered below the cohesive soil deposit at an approximate elevation of 556.1.

4.2.2 Bedrock Conditions

In the area of the proposed structure, bedrock was encountered in both borings below the natural soil deposits. The bedrock consisted of medium hard to hard, slightly to highly weathered sandstone. The amount of rock recovered in each core was 100 percent. The rock quality designation (RQD) of the bedrock ranged between 64 and 78 percent with an average of 71 percent indicating fair to good rock.

Unconfined compressive strength of tested cores ranged between 10,794 and 11,036 pounds per square inch (psi). The tested cores correspond to samples at depths between 3.5 feet and 18.5 feet below the ground surface. A summary of the unconfined compressive strength of the tested cores is shown in Table 1, on the following page.

Boring	Depth (ft)	Elevation	Unconfined Compressive Strength (psi)
TR-62	9.3-9.7	549.0-549.8	10,794
TR-76	19.6-20.0	535.0-535.5	11,036

Table 1-Unconfined Compressive Strength Results

Groundwater Conditions 4.2.3

Seepage was not encountered in either of the borings drilled for this structure. There were also no measurable water levels in the borings prior to rock coring. Water was used during rock coring and masked any seepage zones that might exist in the rock. Measurable water levels were present in both borings upon the completion of coring (includes drill water) between approximate depths of 1.9 and 4.0 feet.

It should be noted that groundwater levels may fluctuate with seasonal variations and following periods of heavy or prolonged precipitation, and therefore, the readings indicated on the boring logs may not be representative of the long-term groundwater level. Long-term monitoring would be needed to obtain a more accurate estimate of the groundwater table elevation.

CONCLUSIONS AND RECOMMENDATIONS 5.0

It is anticipated that the proposed ramp will be constructed as described in Sections 1 and 2 of this report. At this time, it is not known what foundation type would be used to support the abutments. Recommendations for spread footings, drilled shafts, and pipe piles are included for the support of the abutments. Additionally, through discussions with TranSystems Corporation, it is understood that an alternative is being evaluated which considers adding a pier to support the structure. Drilled shaft and spread footing foundation recommendations are also included for this pier. The site is well suited for the use of MSE walls to contain the abutments and hold back the roadway embankment. Recommendations for foundations and MSE walls are presented in the following sections.

Bridge Foundation Recommendations 5.1

5.1.1 Rear and Forward Abutments

ODOT Office of pipe p It is understood through previous communications with the ODOT Office of Structural Engineering (OSE) that pipe piles can be used to support the abutments. This foundation alternative includes supporting the abutments by steel pipe piles placed in prebored holes 12 inches larger than the diameter of the pile and 5 feet deep into bedrock. After installing the steel pipe pile in the prebored hole, grout or cement should be placed in the void area around the pile in the prebored hole prior to constructing the embankment granular fill (per OSE). Therefore, a pile sleeve may not be required for the installation of the piles. However, consideration should be given to the use of pile sleeves to mitigate down drag effects from compaction and to protect the pile during the embankment

26"

- No recommendation

and MSE wall construction. The allowable pile capacity, as per ODOT BDM 202.2.3.2.b, may be utilized in this configuration. Excessive lateral loading and uplift is not anticipated to be a concern at this site. However, if these forces are determined to be significant, longer socket lengths may be required.

Due to the relatively small rigidity of the steel pipe piles compared to drilled shafts, the steel pipe piles are anticipated to provide low lateral resistance to lateral earth pressures that can be induced in high embankment fills. Therefore, the prebored and socketed steel pipe pile foundation system may be a concern if significant lateral loads are present.

Drilled shafts may also be considered for the support of the abutments. Due to the large amount of embankment fill, it appears that drilled shafts socketed a minimum of 5 feet into competent rock will be well suited for the support of the proposed structural abutments. The drilled shafts should be straight (not belled) and may be designed based on an allowable bearing pressure of 80 kips per square foot (ksf) or (40 tsf).

It is recommended that skin friction in the overburden soil/fill and shallow rock socket be neglected. The bearing surface should be clean and free of loose material and water prior to placement of concrete. The drilled center-to-center spacing of drilled shafts should generally be no less than 2.5 times their diameter. A qualified representative or the Geotechnical Engineer should field verify that the drilled shafts are founded on competent bearing materials and the installation procedures meet specifications.

If adequate capacity cannot be developed with reasonable shaft diameter, consideration should be given to the use of deeper rock sockets. Neglecting the upper two feet of the socket, allowable sidewall shear stress/adhesion of 7,500 pounds per square foot (psf) may be used. If deeper sockets are used, the shafts should be designed such that design loads are carried entirely by the socket resistance ignoring any end bearing.

Precautions should be taken to permit the shafts to be drilled and the concrete placed under relatively dry conditions. Although the borings did not encounter significant seepage, water could flow into the drilled shafts during installation particularly from seepage zones and wet zones not encountered in the borings that may be present in the rock or soil. It should be anticipated that materials across the site could vary considerably and temporary casing will be required during the drilling and concrete placement to seal out water seepage in the overburden and prevent cave-in. During simultaneous concrete placement and casing removal operations, sufficient concrete should be maintained inside the casing to offset the hydrostatic head of any groundwater. Extreme care must be exercised during concrete placement and removal of the casing so that soil intrusion is avoided.
Additionally, spread footings bearing in the MSE wall fill may also be considered to support the abutments. As per the Bridge Design Manual 204.6.2.1, an allowable bearing capacity of 4 kips per square foot (ksf) may be used to design the footings.

5.1.2 Piers

Spread footings can be constructed on the rock encountered by the borings to support the piers. Competent bedrock was generally encountered within two to three feet of the soil-rock interface. Spread footings bearing on competent bedrock may be designed using an allowable bearing capacity of 80 ksf (40 tsf).

Currently, lateral loading and uplift is not anticipated to be a concern at this site. However, if spread footings cannot be used at the piers, drilled shafts may be considered to support the piers. If drilled shafts are used to support the foundation of the piers, a minimum of 5-foot deep socket into competent rock is required. The drilled shafts should be straight (not belled) and may be designed based on an allowable bearing pressure of 80 kips per square foot (ksf) or (40 tsf).

It is recommended that skin friction in the overburden soil/fill and shallow rock socket be neglected. The bearing surface should be clean and free of loose material and water prior to placement of concrete. The drilled center-to-center spacing of drilled shafts should generally be no less than 2.5 times their diameter. A qualified representative or the Geotechnical Engineer should field verify that the drilled shafts are founded on competent bearing materials and the installation procedures meet specifications.

If adequate capacity cannot be developed with reasonable shaft diameter, consideration should be given to the use of deeper rock sockets. Neglecting the upper two feet of the socket, allowable sidewall shear stress/adhesion of 7,500 pounds per square foot may be used. If deeper sockets are used, the shafts should be designed such that design loads are carried entirely by the socket resistance ignoring any end bearing.

Precautions should be taken to ensure appropriate drilled shaft construction practices are followed. See section 5.1.1 for more information.

Table 2, on the following page, summarizes the site conditions and foundation recommendations. It should be noted that the bedrock surface varies widely across the project area. The approximate bearing elevations presented below indicate the elevations at the boring locations only. Variations in the elevation at which competent bedrock is encountered should be anticipated.

Structural Element	Boring	Existing Ground Surface Elevation (Feet)	Foundation Type	Approximate Bearing Elevation (Feet)	Allowable Bearing Capacity
	And the Article Street and the		Pipe Piles	535.1 *	Pile Capacity ⁺
Rear Abutment Pier	TR-76	551.1	Drilled Shafts	535.1 *	80 ksf ⁺⁺
	In /o		Spread Footings	MSE Fill	4 ksf
	TR-62/		Spread Footings	535.1-548.1	80 ksf
	TR-02/	551.1-559.1	Drilled Shafts	535.1-548.1 *	80 ksf ⁺⁺
	110.70		Pipe Piles	548.1 *	Pile Capacity ⁺
Forward	TR-62	559.1	Drilled Shafts	548.1 *	80 ksf ⁺⁺
Abutment	110-02	20011	Spread Footings	MSE Fill	4 ksf

Table 2-Summary of Foundation Recommendation

* Includes 5-foot socket into competent rock.

⁺ Pile capacity should conform to ODOT BDM 202.2.3.2.

++ End bearing capacity only.

5.2 Mechanically Stabilized Earth (MSE) Retaining Wall Recommendations

It is understood that MSE walls would be used to construct the embankments and contain the abutments. Recommendations for the MSE wall are presented in the following sections. The MSE wall should be constructed per the recommendations presented in this report and in conformance with the manufacturer's specifications.

5.2.1 MSE Walls: General Information

An MSE retaining wall essentially consists of good quality backfill material with layers of metal or plastic reinforcing that are attached to concrete facing panels. The MSE wall and associated backfill should be constructed in accordance with the specifications of the manufacturer of the MSE wall.

A global stability analysis and bearing capacity analysis were performed for the MSE walls at this bridge location in accordance with ODOT and AASHTO guidelines. The MSE walls were also analyzed for sliding and overturning.

Calculations for bearing capacity, sliding, and overturning as well as the results of the global stability analyses are attached. Other external and internal stability analyses are required for the design of an MSE wall, but are considered outside the scope of this report. The parameters required to perform the stability analyses are presented in Table 3, on the following page. In accordance with ODOT guidelines, a unit weight of 120 pcf and a friction angle of 34 degrees were selected for the backfill material in the reinforced zone. Similarly, the fill material used to construct the roadway embankments is assumed to have a unit weight of 120 pcf and a friction angle of 30 degrees. If the embankment fill material or backfill material for the reinforcing zone has properties significantly different from these values, DLZ should be informed so that the analyses may be revised as necessary.

		Unit	Str	ength P	aramete	rs	
Zone	Soil Type	Weight	Undra	ined	Drained		
Zonc	Don 11P	(pcf)	c	¢	c'	φ'	
Reinforced Fill	Compacted Granular Fill	120	0	34	0	34	
Retained Soil	Compacted Embankment Fill	120	0	30	0	30	
Foundation Soil (Rear and Forward Abutments) (Borings TR-62&76)	Stiff to Hard Sandy Silt (A-4a)	120	3500	0	0	29	

Table 3, Soil Parameters Used in The MSE Wall Stability Analyses

5.2.2 MSE Wall Evaluations and Recommendations

The rear abutment location was analyzed at this structure location due to the relatively thick soil overburden cover over the rock. Due to the close proximity of the rock at the forward abutment, the foundation of the MSE wall is anticipated to be bearing on rock or near bedrock, and hence the bearing capacity and the sliding of the wall are not of concern. The proposed embankment in both alternatives is slightly higher at the forward abutment location than at the rear abutment. It should be noted that variations may be found in borings drilled for the final design that may change the results of the analyses.

Analyses for the MSE walls bearing on the native soils at this location yielded factors of safety above the minimum recommended values for undrained and drained global stability, as well as stability (sliding and overturning) and undrained and drained bearing capacity. Consequently, it is recommended that MSE walls be built in this area using a minimum embedment of 3.5 feet, unless bedrock is encountered at a shallower depth. If founded on bedrock, no embedment into the rock is required.

Due to the currently proposed location of the forward abutment, significant rock excavation should be anticipated to accommodate the MSE wall reinforcing straps.

The stability analysis of the MSE wall was based on the assumption that the top 8 feet of the native soil along the MSE wall consists of natural cohesive deposits. The minimum embedment of the MSE wall in accordance to ODOT and AASHTO guidelines is 3.5 feet. If any loose, soft or compressible soils are encountered while excavating for the leveling pad, these soils should be removed and replaced with compacted granular fill. Any compacted granular fill below the leveling pad should be aggregate base conforming to CMS Item 304. In all cases, the thickness of the unreinforced concrete leveling pad shall not be less than 6 inches conforming to BDM Item 204. For stability, calculations have indicated that a minimum reinforcement length of 0.8H or 30.0 feet is required for stability of the proposed MSE wall at the forward abutment location. Similarly, a

minimum reinforcement length of 0.8H or 25.4 feet is required for stability of the proposed MSE wall at the rear abutment.

The total maximum settlement of the MSE wall volume at the rear abutment was estimated to be approximately 4 inches at the centerline of the wall. Settlement was calculated using the computer program EMBANK, using the "end of fill" option to model the non-continuous embankments. Differential settlement at this location was estimated to be approximately 0.50 percent. MSE retaining walls are able to withstand relatively large amounts of differential settlement, typically up to 100 millimeters per 10 meters of wall length (1.0 percent). Settlement calculations are presented in Appendix IV. The MSE wall at the forward abutment will be founded at or near bedrock. Therefore, the settlement at the forward abutment location is assumed to be negligible.

Time-rate of settlement calculations will be presented in the final report based upon laboratory test results from samples collected in the final borings.

Table 4, below presents the MSE retaining wall parameters and results of analyses.

Table 4, MSE Retaining Wall Parameters and Analyses Results
(Forward and Rear Abutments)
a ta t Till Foundation

Compacted Granular Fill Foundation
Retained Soil (New Embankment)
Unit Weight = 120 pcf
Coefficient of Active Earth Pressure $(K_a) = 0.33$
(Based on $\Phi' = 30^{\circ}$)
Sliding along base of MSE wall
Sliding Coefficient (μ)(0.67) = tan 29°(0.67) = 0.37
Use $(\mu)(0.67) = 0.35$ as a maximum value as per AASHTO, BDM, 303.4.1.1
Allowable Bearing Capacity – Undrained Condition
$q_{all} = 7,277 \text{ psf}$
Allowable Bearing Capacity – Drained Condition
$q_{all} = 6,976 \text{ psf}$
Global Stability
Factor of Safety – Undrained Condition = 2.3
Factor of Safety – Drained Condition = 1.6
Factor of Safety – Drained Seismic Condition = 1.5
Estimated Settlement of MSE volume
Maximum Total Settlement ≈ 4 inches
Differential Settlement $\approx 0.50\% < 1.0\%$
Full Height of MSE Wall (Maximum) = 37.5 feet (including embedment depth)
Minimum Embedment Depth = 3.5^+ feet
Minimum Length of Reinforcement for External Stability = 30.0 feet (Forward Abutment)
Minimum Length of Reinforcement for External Stability = 25.4 feet (Rear Abutment)
⁺ Minimum embedment depth. No embedment in bedrock is required.

MSE Wall Foundation Earthwork Recommendations 5.3

Excavations for the proposed MSE wall should be prepared in accordance with ODOT-CMS Item 503, "Excavation for Structures." Excavations deeper than 5.0 feet must be sloped or shored to protect workers entering the excavations. Refer to OSHA regulations (29 CFR Part 1926) concerning sloping and shoring requirements for excavations. It is recommended that earthwork be performed under continuous observation and testing by a soils technician with the general guidance of a geotechnical engineer. Backfill material used to establish planned grades may consist of nonfrost susceptible clean granular soil free of topsoil or organic material. Alternatively, the excavation may be backfilled with Ohio Department of Transportation (ODOT) Construction and Material Specifications (CMS) Item 304 and should be compacted in conformance to CMS 203.06 and 203.07.

Groundwater Considerations 5.4

Water seepage was not encountered in any of the borings. Groundwater was not noted prior to adding drill water. Representative final water levels could not be obtained due to the use of water during rock coring. Excavation for the pier foundation is expected to be limited to 15 feet or less. Foundation construction on the rock is expected to encounter only minor seepage. Excavations or shafts extending below ground level may encounter more significant seepage through fractured zones in the rock. The contractor should be prepared to deal with seepage and water flow that may enter any excavations.

CLOSING REMARKS

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our report.

Respectfully submitted,

DLZ OHIO, INC.

www. Mis

Steven Riedy Geotechnical Engineer

Wood Alkasawash (SJR)

Wael Alkasawneh, P.E. Geotechnical Engineer

sjr

M:\proj\0121\3070.03\US 52\Ramp A\New after Transystem Final Plans_10_2_2006\US 52 Ohio River Road-Structure Report-RAMP A 10-16-2006 SJR.doc

APPENDIX I

Structure Plan and Profile Drawings - Two (2) -11"x17" Boring Plan - 11"x17"

 \square

.

 \square

 \square

Π

.

APPENDIX II

General Information – Drilling Procedures and Logs of Borings Legend – Boring Log Terminology Boring Logs – Two (2) Borings

. __

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Geot\Forms\General Info English.doc

LEGEND – BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot
<u>Term</u>	Standard Penetration
Very Loose	0-4
Loose	4 – 10
Medium Dense	10 – 30
Dense	30 – 50
Very Dense	over 50

Cohesive Soils - Consistency

<u>Term</u> Very Soft Soft Medium Stiff Stiff Very Stiff Hard	Unconfined Compression tons/sq.ft. less than 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 over 4.0	Blows/Foot Standard Penetration below 2 2-4 4-8 8-15 15-30 over 30	<u>Hand Manipulation</u> Easily penetrated by fist Easily penetrated by thumb Penetrated by thumb with moderate pressure Readily indented by thumb but not penetrated Readily indented by thumb nail Indented with difficulty by thumb nail
---	---	--	---

b. Color – If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

c. Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows:

Description	<u>Size</u>	Description	Size
Boulders	Larger than 8"	Sand Coarse	2.0 mm to 0.42 mm
Cobbles	8" to 3"	- Fine	0.42 mm to 0.074 mm
Gravel – Coarse	3" to ¾"	Silt	0.074 mm to 0.005 mm
– Fine	¾" to 2.0 mm	Clay	smaller than 0.005 mm

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English.doc

c	1.	The main soil com	conent is listed first. The minor components are listed in order of decreasing percentage of particle size.
e	э.	Modifiers to main s	oil descriptions are indicated as a percentage by weight of particle sizes.
		trace0 to 1little10 tosome20 to"and"35 to	20% 35%
1	.	Moisture content o	f cohesionless soils (sands and gravels) is described as follows:
		<u>Term</u>	Relative Moisture or Appearance
		Dry Damp Moist Wet	No moisture present Internal moisture, but none to little surface moisture Free water on surface Voids filled with free water
	g.	The moisture cont	ent of cohesive soils (silts and clays) is expressed relative to plastic properties.
		<u>Term</u>	Relative Moisture or Appearance
		Dry Damp Moist Wet	Powdery Moisture content slightly below plastic limit Moisture content above plastic limit but below liquid limit Moisture content above liquid limit
10.	Roo	ck Hardness and R	ock Quality Designation
	a.	The following tern	ns are used to describe the relative hardness of the bedrock .
		Term	Description
		Very Soft	Permits denting by moderate pressure of the fingers. Resembles hard soil but has rock structure. (Crushes under pressure of fingers and/or thumb)
		Soft	Resists denting by fingers, but can be abraded and pierced to shallow depth by a pencil point. (Crushes under pressure of pressed hammer)
		Medium Hard	Resists pencil point, but can be scratched with a knife blade. (Breaks easily under single hammer blow, but with crumbly edges.)
		Hard	Can be deformed or broken by light to moderate hammer blows. (Breaks under one or two strong hammer blow, but with resistant sharp edges.)
		Very Hard	Can be broken only by heavy and in some rocks repeated hammer blows.
	b.	Rock Quality De obtained by sum total length of the	esignation, RQD This value is expressed in percent and is an indirect measure of rock soundness. It is iming the total length of all core pieces which are at least four inches long, and then dividing this sum by the e core run.
11.	Gr	adation – when tea	sts are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).
12.	W th	hen a test is perfor e moisture content	rmed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, is indicated graphically.
13	. Tł	ne standard penetra	ation (N) value in blows per foot is indicated graphically.

ſ

L

L

L

 \Box

Job No. 0121-3070.03		- 1	STANDARD PENETRATIC Natural Moisture Content, %	$\begin{array}{c c} HL \\ \hline HL \\ Blows per foot - \\ 10 & 20 & 30 & 40 \\ \end{array}$							
	3-18-05	GRADATION	pue pue	₩S % S J % S W % S O %	17 15 - 6 46						
DLZ OHIO INC. 7 6121 HUNILET HOAU, COLOMBOO, CHICATOLES (CHICATOLE)	Date Drilled:		<u>–</u>	DESCRIPTION	Very stiff gray SANDY SILT (A-4a), little gravel, little clay; contains sandstone fragments; damp.	Soft to medium hard gray SANDSTONE; fine grained, highly weathered to decomposed, broken.	Hard gray SANDSTONE; very fine to fine grained, slightly weathered, argillaceous, micaceous, thinly bedded, slightly fractured.	@ 9.3', qu = 10,794 psi.	@ 11.2' to 11.3' high angle fracture.		Bottom of Boring - 16.0'
	I ocation: []S		Penetro-	(fst)	3.5				R-1		
	ſ	Sample No.		avine Drive		2			78%		
oul st	TR.62			úevosef	<u>ن</u>	~			76 Hec 0" 120"		
TranSvetems Inc	Boring			ed smole	7 0 8 9 9 9 9	555.6 50/2	-553.1-		Core 120"		543.1
Cliant Tra				Depth E (ft) (3.5 5 5 7	μ φ	1	· · · · · · ·	15	³ ³ ³ ³ ³ ³ ³ ³ ³

.

DL CoHIO NGC - 6:121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 - (61-)988-0040 J. Inc. Papers: SCI-823-0.00 TH-76 Inc. Papers: SCI-823-0.00 Th-76 Loanion: AS Pet Plan Samue Hand Diffice Fabre Samue Hand Diffice Fabre Samue Hand Diffice Fabre Samue Hand Diffice Fabre Diffice Fabre <t< th=""><th>Job No. 0121-3070.03</th><th></th><th></th><th>STANDARD PENETRATIC Natural Moisture Content, 9</th><th>$PL \vdash 111 \\ Blows per foot - \bigcirc 40 \\ 10 & 20 & 30 & 40 \\ \hline \end{array}$</th><th></th><th></th><th>ŦO</th><th></th><th></th><th>/</th><th></th><th></th><th></th><th></th><th></th></t<>	Job No. 0121-3070.03			STANDARD PENETRATIC Natural Moisture Content, 9	$PL \vdash 111 \\ Blows per foot - \bigcirc 40 \\ 10 & 20 & 30 & 40 \\ \hline \end{array}$			ŦO			/					
S. Inc. Duz Onito Ints. First HINILEY ROAD. COLUMBUS, OHIO 42229 1 (614)9989.0040 T.H-76 Lonator: AS Per Plan Perject: SCI-823-0.00 Date Drifter: 3/30/05 T.H-76 Lonator: AS Per Plan Matter level at completion twoin (prior to corrite) Description Ample Hand Water level at completion twoin (prior to corrite) Description Direct Alsh Water level at completion twoin (prior to corrite) Matter level at completion twoin (prior to corrite) B Propect ClassifyATTONS: Mater level at completion twoin (prior to corrite) Description Direct Alsh Lucuston Mater level at completion twoin (prior to corrite) B Propect ClassifyATTONS Water level at completion twoin (prior to corrite) B Propect ClassifyATTON Mater level at completion twoin (prior to corrite) B P P P P B P P P P B P P P P B P P P P B P P P P B P P P P B P P P P B P P P P<			\downarrow		% Clay % کالل					···						
DL2 OHIO INC 6121 HUNTLEY FOAD, COLUMBUS, OHIO 43229 - (61:4)BBB-004 JINC. TH-Y6 Project: SCI-823-0.00 TH-Y6 DL2 OHIO INC 6121 HUNTLEY FOAD, COLUMBUS, OHIO 43229 - (61:4)BBB-004 TH-Y6 DL2 OHIO INC 6121 HUNTLEY FOAD, COLUMBUS, OHIO 43229 - (61:4)BBB-004 A 10 Filter INTER FOAD DESCRIPTION DESCRIPTION: Water seepage at None Observed Disponse A 10 Hard brown SILT AND CLAY (A-6a), trace fine to coarse sand, trace of mage at None (prior to coring) DESCRIPTION DESCRIPTION Standar A 10 Hard brown SANDY SILT (A-4a), trace to liftle clay, its in trace of inte coarse sand, trace fine to coarse sand, trace of inte coarse sand, trace fine to coarse sand, trace fine to coarse sand, trace of inte coarse sand, trace fine to coarse sand, trace clay, ittle drace fine to coarse sand, trace fine to coarse sand, trace fine to coarse sand, trace fine to coarse			410	put					• • • • • • • • • • • • • • • • • • • •							
Sinc. DL2 OHIO INC 6121 HUNTLEY ROAD, COLMBUS, OHIO 4329 - 614)986-004 Sinc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. And the set of the set			HAD		··						••• <u>•</u> <u></u>	···			•••	
S. Inc. DLZ OHIO N.C 6.321 HUNTLEY ROAD, COLUMBUS, OHIO 43239 - 1 TH-76 Location: AS Per Plan Project: SCI-823-0.00 Date Dil Ringe Location: AS Per Plan Watter seepage at None Observed Date Dil Ringe Continue Hand Watter Watter seepage at None Observed Ringe Continue Peretro- Watter tevel at completion: None (prior to coning) Ringe Continue Peretro- Very stiff to hard brown SNDY SILT (A-4a), trace fine to coarse trace gravel; damp. Lin 2 4.5 Hand brown SANDY SILT (A-4a), trace clay, little gravel; damp. Lin 6 11.0', contains sandstone fragments Cardin, trace clay, little gravel; damp. Rin 6 11.0', contains sandstone fragments Cardin, trace clay, little gravel; damp. Rine Rob Rin Contains sandstone fragments Rine Rob Rin Rine Rin Rine Rob Ri		2/05														
s, Inc. IR-76 IR-76 Location: No. Sample Hand No. No. No. No. Rec Robe Inc. A.5+ Rec Robe Rec Robe Rec ROD Rec Rec Rec Rec </th <th>Project: SCI-823-0.00</th> <th></th> <th>WATER OBSERVATIC</th> <th></th> <th>DESCRIPTION</th> <th>SILT SILT</th> <th>Very stiff to hard brown SANDY SILT (A-4a), trace to little clay little gravel; damp.</th> <th></th> <th>Medium dense brown SANDY SILT (A-4a), trace clay, little gravel; damp.</th> <th>@ 11.0', contains sandstone fragments</th> <th></th> <th>We athered to decomposed, broken. We athered to decomposed, broken. Hard brown SANDSTONE; very fine to fine grained, moderate to highly weathered medium hedded moderately fractured.</th> <th>@ 16.4'-16.8', 17.3', 18.4', filled fractures. @ 19.4' gray @ 20.9'-21.3', fractured.</th> <th>19.6', qu = 11</th> <th>Bottom of Boring - 25.0'</th> <th></th>	Project: SCI-823-0.00		WATER OBSERVATIC		DESCRIPTION	SILT SILT	Very stiff to hard brown SANDY SILT (A-4a), trace to little clay little gravel; damp.		Medium dense brown SANDY SILT (A-4a), trace clay, little gravel; damp.	@ 11.0', contains sandstone fragments		We athered to decomposed, broken. We athered to decomposed, broken. Hard brown SANDSTONE; very fine to fine grained, moderate to highly weathered medium hedded moderately fractured.	@ 16.4'-16.8', 17.3', 18.4', filled fractures. @ 19.4' gray @ 20.9'-21.3', fractured.	19.6', qu = 11	Bottom of Boring - 25.0'	
Inc. Inc. <th< td=""><td></td><td></td><td>Hand</td><td>Penetro- meter</td><td>(tsf)</td><td>4.5+</td><td>4.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			Hand	Penetro- meter	(tsf)	4.5+	4.0									
120°E 11 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10		Ľ	ple	Core	∖ ssər¶											<u> </u>
			San	<u></u>	θνμΟ		~~~	<i>с</i> о	4	ي م	9		ROD	64%		
	s, Inc.	TR-76		(uị) <i>L</i> i	эчорэя								Rec	120		
IOID1 3 TER T T T 0 0 -	ystem			···_		4 6	а 10		<u>ທ</u>	11 12 13		L	Core	120		
<i>Client:</i> TranSy LOG OF: B((ft)	: TranS	LOG OF: Boring						1 1	542.1				-1			1 1

EIFE: 0151-3010-03 | 10/11/2006 5:43

l

 \prod

_____ {_____

APPENDIX III

Laboratory Test Results

		Mass (Gram) Unit Wt. (pcf) Load (lbs) Strength (psi)	10,794		11,036												
		Load (lbs)	33,550		34,140					 		 					
		Unit Wt. (pcf)	154.40		140.18								 				
iens		Mass (Gram)	590.26		509.31								 				
mpression of Rock Core Specimens (ASTM D-2938) Client: TranSvstems	10/12/2006	Volume (ft ³)	0.0084284		0.0080101				-				 				
Core	10/	ΓD	2.357		2.255											 	
f Rock (938) Client:	Date:	L(ave)	4.688		4.476												
SSION Of RC (ASTM D-2938) Clie	Ď	L ₃	4.677		4.466		 										
ssion Astm		L2	4.696		4.478						-						
) (٦	4.691		4.485							_					
Соп		D _(ave)	1.989		1.985												
ined 3		D3	1.991	1.989	1.982	1.983											
Unconfined Co -3070.03	00	D_2	1.987	1.991	1.985	1.986											
Un 21-30	SCI-823-0.00	D1	1.989	1.989	1.986	1.986									<u> </u>		
Unconfi DLZ Project No.: 0121-3070.03	me: SCI-	Depth (ft.)	9.3'-9.7'		19.6'-20.0												
rojec	ct Nai	Run	1		- -		-		 	 					 		
DLZ F	Project Name:	Boring	TR-62		TR-76									-		 -	

Ì

6121 Huntley Road * Columbus, Ohio * 43229-1003 * Phone: (614) 888-0576 * Fax (614) 888-6415

Engineers * Architects * Scientists

APPENDIX IV

MSE Wall Global Stability Analysis Results MSE Wall Bearing Capacity and Stability Calculations MSE Wall Settlement Calculations Drilled Shaft – End Bearing and Side Resistance Calculations

MAT	T 7	SUBJECT

Client	TranSystems
Project	SCI-823 Portsmouth Bypass
ltem	Bearing Capacity (Forward Abutment)
US-52 Ra	mp A-Northbound over Ohio River Road

JOB NUMBER	0121-3070.03						
SHEET NO.	3	OF	7				
COMP. BY	SJR	DATE	10/12/06				
CHECKED BY	ZWT	DATE	10-17-06				

•

US-52 Ramp A over Ohio River Road

.

ÚÄÄÄÄÄÄ ONE DIMENSIONAL SE JINCREMENT OF	TTLEMENT ANALYS STRESSES BENEA	IS/Federal Highwa IH THE END OF FIL	y Administrati L CONDITION	on ÄÄÄÄÄ 3
³ Project Name : SCI-82 ³ File Name : US 52 ³ Date : 10/13/ ³	Ramp A MSE I 10	Project Manager :	TranSystems Nix SJR モルT	3 3 3 3 3
3	Settlement fo	or X-Direction		3 3
 Embank. slope, x direc. y direc. Embankment top width Embankment bottom width Ground Surface Elev. 	= 54.00 (ft) = 30.00 (ft) = 138.00 (ft)	Height of fill Unit weight of p load/unit are Foundation Elev	fill = 120.00	(pcf) ³ (psf) ³
³ Water table Elev.	= 552.00 (ft)	Unit weight of	Wat. = 62.40	(pcf) ³ ₃
³ LAYER ³ N§. TYPE THICK. ³ (ft)	COEFFICIE COMP. RECOMP.		SPECIFIC VOID GRAVITY RATI	-
³ 1 INCOMP. 3.0 ³ 2 COMP. 5.0 ³ 3 COMP. 6.4	0.130 0.000 0.035 0.000	120.000.000125.000.000125.00	2.65 0.3 2.65 1.0	
³ SUBLAYER ³ N§. THICK. ³ (ft)	ELEV. (ft)	SOIL STRESSES INITIAL (psf)	MAX.PAST PRESS (psf)	3 3 3 3
³ 1 INCOMP. ³ 2 5.00 ³ 3 6.40 ³	549.50 543.80	516.50 873.32	516.50 873.32	3 3 3 3 3
3 X = 0.00 ³ Layer Stress Sett. 3 (psf) (in.)	X = 6.90 Stress Sett. (psf) (in.)	X = 13.80 Stress Sett. (psf) (in.)	X = 20. Stress Set (psf) (ir	3 70 3 .t. 3
³ 1 INCOMP. INCOMP. ³ 2 49.46 0.23 ³ 3 107.40 0.07	INCOMP. INCOMP 222.76 0.89 253.81 0.15	433.39 1.52 445.73 0.24	651.47 0.	3 02 33 33 3
3 Settlement at Corner	of Wall 1.04	1.76	2.	35 ³ 3
X = 27.60 $Layer Stress Sett.$ $(psf) (in.)$	X = 34.50 Stress Sett. (psf) (in.)	X = 41.40 Stress Sett. (psf) (in.)	X = 48. Stress Set (psf) (ir	:t. ³
³ 1 INCOMP. INCOMP. ³ 2 858.97 2.44 ³ 3 860.58 0.40 ³	INCOMP. INCOMP 1071.39 2.80 1068.99 0.47	1283.19 3.11 1272.10 0.52		38 ³ 57 ³
³ 2.84	3.26	3.63	3.	95 ³ 3
³ X = 55.20 ³ Layer Stress Sett. ³ (psf) (in.)	X = 62.10 Stress Sett. (psf) (in.) P	X = 69.00 Stress Sett. (psf) (in.) age 1		3 3 3 3

3						er Ohio Ri		~	3
3	1	INCOMP.	INCOMP.	INCOMP.					3
3	2	1638.09	3.56	1665.33	3.59	1668.23	3.59		3
3	3	1588.10	0.60	1641.73	0.62	1653.45	0.62		3
3									3
3			4.16		4.21	\mathcal{C}	4.21	\supset	3
3								· II/E.h.	nkmut 4. 3
3						Settleme	t at v	Vall/ Linda	L. 3
3									3
ÀÄ	ÄÄÄÄ	Hit arrow	w keys to	display (next sci	reen. <f8></f8>	Print.	<f10> Main</f10>	Menu ÄÄÄÄÄÙ

.

,

Ò

CLIENT Tran Systems Corp / ODOT D-9 PROJECT NO. 0121-3070.03 PROJECT SCI-823 Portsmouth Bypass SHEET NO. 6 OF 7 ENGINEERS • ARCHITECTS • SCIENTISTS SUBJECT <u>Consolidation Parameters</u> COMP. BY ____ PLANNERS • SURVEYORS らずだ DATE 10-13-04 US-52 Ramp A over Ohio River Road CHECKED BY GWT DATE 10-17-06 Most Critical Soil Profile is at buring TR-76 location. At TR-76, maximum MSE wall height is approximately 28.2 4-469 N=54 4.70 * Assume Spils are normally Consolidated 28.2 Embankment <u>Elev</u> 555 10 Y=120 pcf MSE Wall Compacted Gran Fill 1= 20 pcf & Assume Indompressible 552 Conesive Sandy Silt 8= 125 Acf = 13.5% * Cc= 0.13 20 = 0.365 [FHWA- NHI-00-045] 547 Conssionless Sandy silt | 8=125 pcf +{ N=21 N'=21 +> c'=57 [FHWA] 540.6 BEDROCK Cc= 0.035 , co=10] - See Colculation Below * Consolidation Parameters are estimated from FHWA NHI-00-045 For; cohesive soils based upon moisture and, cohesignless soils based upon an average SPT N- Values. Π. The computer program EMBANK requires inputs for Co. Or and e. To evaluate the settlement of the granular layers we must calculate equivalent consolidation parameters from C: $\prod_{i=1}^{n}$ <u>|</u>= Say eo= 1.0 in this case 1+00 [], <u>c</u> = 2.0 2 c1= ¢c = 1+1.0 6. $C_{c} = \frac{2}{57} = 0.035$ When C'= 57 , From EMBANK 5 = 4.21" Estimated Differential Settlement (DS) $DS = \frac{4.21'' - 0.30''(12'')}{69' - 0'}$ 0.0050 0.50%

CLIENT Tran Systems Corp / ODOT D-9 PROJECT NO. 0121-3070.03 PROJECT SLI- 823 Portsmouth Bypass SHEET NO. SUBJECT Drilled Shaft - End Bearing F COMP. BY_ SJR Side Friction - US-52 Ramp A. CHECKED BY_ DATE _10-17-0-+ From lab testing rock core samples 2m = 10,794 psi (TR-62) FHWA-1F-99-025 Eg Hills (19 gmax (MPa) = 4.83 [9u (MPa)] For ROD between 70-100 % and gu > 0.5 MPa (5.2 tsf). End Bearing gu = 10,794 psi = 74.42 MPa. 9max = 4.83 [2u (14Pa)] as' [Eg=: 11.6] 9max = 4.83 [74.42 MPa] = 43.50 MPa $g_{max} = 43.50 \text{ MPa} = 6309 \text{ psi} = 908 \text{ ksf}$ $g_{max} = \frac{908 \text{ ssf}}{7.6} = 303 \text{ ksf}$ * For this type of rock we typically use Jallow = 80 KSF (40+5F) Side Friction EHWA-IF-99-025 Cat 11.24 forma 0.65 Pa [5/Pa] = 0.65 Pa [5/Pa] = 0.65 Pa [5/Pa] - Assumes Smooth Rock Socke * From lab testing rock core samples; que 10,794 psi fr = 4,500 psi frax= 0.65 pa[21/pa] = 0.65 pa[fc/pa] = Frax = 0.65 (14.70 psi) [10,794 psi) 0.5 14.70 psi) [4500 psi) [4500 psi) [4500 psi) [4500 psi] fmax= 258.9 psi = 167 psi Use Frinx = 167 psi fallow = 167psi = 55psi = 7,920psf Use fallow = 7,500 psf