

SCI-823-0.00 PID No. 19415

S.R. 823 OVER SLOCUM AVENUE (T.R. 248)

STRUCTURE TYPE STUDY SUBMITTAL

TABLE OF CONTENTS

Table of Contents

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

1.	Introduction	1
2.	Design Criteria	1
3.	Subsurface Conditions and Foundation Recommendation	1
4.	Roadway	2
5.	Proposed Structure Configurations	3-6
6.	Recommendations	6
APPEN •	IDIX A Cost Comparison Summary (3 Alternatives)	11 Sheets
APPEN • •	DIX B Preliminary Site Plan – Alternative 1 - Preferred (Sheet 1 of 3) Typical Transverse Section (Sheet 2 of 3) Typical Abutment Section (Sheet 3 of 3)	3 Sheets
APPEN •	IDIX C Preliminary Vertical Clearance Calculations	6 Sheets
APPEN •	IDIX D Preliminary Site Plan – Alternative 2 (Sheet 1 of 1) Preliminary Site Plan – Alternative 3 (Sheet 1 of 1)	2 Sheets

APPENDIX E

• Preliminary Geotechnical Report and MSE Wall Evaluation

BRIDGE TYPE STUDY NARRATIVE

1. Introduction

TranSystems Corporation is providing engineering services to the Ohio Department of Transportation for the design of new left and right overpass structures that will carry the proposed S.R. 823 bypass over Slocum Avenue. As requested by the Scope of Services, a Structure Type Study report is to be submitted before any plan development. The purpose of this report is to investigate various span arrangements and superstructure and substructure types in order to determine the most appropriate and economical structure type that will meet the project requirements. An initial Structure Type Study report dated 7/15/2005 was submitted to the Department and comments, dated 9/8/2005, were in turn received by Transystems Corporation. However, since these dates, the entire project has experienced a change in profile – the original project profile presented in the Preferred Alternative Verification Report (PAVR) submitted July 2005 has been altered in order to reduce the fill heights over culverts and to rebalance the cut and fill earthwork along the entire project length. This revised project profile was approved 2/15/2006 by the Department and the revised profile at the proposed bridge site involves a change to the vertical curvature of S.R. 823. The revised profile raises the elevations of the proposed S.R. 823 Mainline over Slocum Avenue from the elevations specified in the July 2005 PAVR. In addition to the change in profile for the mainline the intersection of Slocum and Pershing Avenues has been relocated so that the intersection is nolonger below the structure. The proposed intersection maintains the location of Slocum Avenue and relocates Pershing Avenue to either side of the mainline embankment in an offset-t arrangement. The offset-t intersection was presented to the District and approved on 8/14/06. The re-designed intersection will affect the placement of substructure units and thus alter span lengths from those originally proposed in July 2005. Combining this with the change in mainline profile warrants a reevaluation of bridge types for the proposed S.R. 823 Mainline over Slocum Avenue. This follow-up Structure Type Study presents the results of these reevaluations as well as alternative bridge types that are investigated in accordance with the 9/8/2005 ODOT comments. As a result, three (3) alternatives for construction of the proposed S.R. 823 Mainline over Slocum Avenue are evaluated in this study and are designated as Alternatives 1, 2 and 3. Each of these alternatives is evaluated with regard to estimated construction cost, projected maintenance costs, horizontal and vertical clearances, constructability and maintenance of traffic. Discussion of these alternatives is presented later in this report.

2. Design Criteria

The proposed structure will be designed according to the most current version of the Ohio Department of Transportation Bridge Design Manual and the 2002 AASHTO Standard Specifications for Highway Bridges, 17th Edition. Horizontal clearances (clear zone width and horizontal sight distance) are based on the Ohio Department of Transportation Location and Design Manual, Volume One – Roadway Design.

3. Subsurface Conditions and Foundation Recommendation

DLZ Ohio, Inc. performed the subsurface exploration for the proposed bridge and prepared the Preliminary Bridge Foundation Recommendations which were presented in Section 3 and Appendix E of the original 7/15/2005 Structure Type Study report. Updated boring logs for the three test borings (TR-36, TR-37 and TR-38) and preliminary MSE wall evaluations – performed by DLZ Ohio, Inc. – accompany this modified/updated Structure Type Study Report. The SSI found 73 to 80 feet of generally cohesive soils with intermittent granular soils above bedrock. The preliminary evaluations by DLZ reveal that MSE wall stability is marginal. The use of wick drains and monitoring of pore water pressures is recommended to maintain a drained condition under the MSE embankments. DLZ also recommends the MSE wall be built in stages to maintain stability of the embankment. Refer to the preliminary MSE wall evaluation report, dated 8/18/2006, for more details and information. In lieu of

MSE walls to support the roadway embankment 2:1 spill through slopes can be used. The stability of the spill through slopes is included in the attached MSE wall evaluation. Wick drains are also recommended for the spill through slope to reduce the settlement time. Please refer to the previously submitted DLZ report *Proposed Highland Bend Embankments*, June 8, 2006, for information regarding time rate of consolidation and possible wick drain spacing for the embankments.

4. Roadway

The purpose of this project is to construct a new bypass state route around the town of Portsmouth, Ohio. The proposed alignment will carry two lanes of traffic, 15 plus miles in either direction, from an interchange with US 52 just east of Portsmouth to another interchange with US 23, located north of Portsmouth in Valley Township.

Both the left and right structures are similar and will consist of two 12'-0" travel lanes with 6'-0" median shoulders and 12'-0" outside shoulders. Each bridge deck will be 44'-11½" out-to-out with a 1'-6" outside straight face deflector parapet (SBR-1-99) and a 1'-5½" inside straight face deflector parapet (similar to a Type A1 barrier from Roadway Standard Construction Drawing RM-4.3 but using a base width of 1'-5½" and top width of 6 5/8"). The left and right structures will be separated by a 1" longitudinal joint. Horizontal and vertical sight distances are in accordance with the design standards, for all alternatives considered. The profile grade line for both bridge sections will be located at the inside edge of pavement, which is 7'-6" from the centerline of survey and construction of S.R. 823. Noise Barriers are required on the structures in compliance with the noise analysis and environmental documentation.

Slocum Avenue will remain on its current geometry and Pershing Avenue will be relocated to each side of SR 823 using an offset-t intersection.

Vertical and Horizontal Clearances – The vertical alignment of these mainline structures is dictated by the overall vertical design of the new bypass profile. According to the ODOT Location and Design Manual, Volume One – Roadway Design, Figure 302-1E, a preferred vertical clearance of 15'-0" (minimum of 14'-6") must be provided over Slocum Avenue which is positioned directly below the S.R. 823 mainline structures at this site. Each alternative considered provides more than the preferred 15'-0" clearance. The 15'-0" clear zone from edge of traveled way is based on Figure 600-1E of the ODOT L&D Manual, Volume One. The information input into Figure 600-1E is as follows:

- 1. existing Slocum Ave. may be classified as a Urban Local Road and the *posted* speed is 50 mph;
- 2. from phone conversations with Scioto County Engineers Office the most recent ADT of Slocum Avenue is 1,897 at the Corporation Limits and is similar to the traffic data presented on the plans for existing Slocum Ave. over the Little Scioto River.
- 3. proposed Slocum Avenue will have open drainage and ditch slopes of 4:1 are assumed

Using the identified parameters of items 1) through 3) in Figure 600-1E results in the minimum horizontal clear zone width of 15'-0".

Pavement Drainage - The collection of storm water runoff will be addressed off of the bridge, thus scuppers will not be required. Catch Basins will be provided near the rear abutment to direct pavement drainage away from the bridge. The type of drainage system will be investigated as part of the preliminary design.

- MSK Straps

Utilities - No utilities will be placed on the bridge. However, lighting and ITS conduits will be provided as necessary. Field survey and utility data collection is ongoing at this time and utility dispositions will be addressed at TS&L. The potential utility impacts of the structures are considered the same for all alternatives under consideration.

Maintenance of Traffic – While the new bridges are under construction, traffic will be maintained on both existing Slocum and Pershing Avenues. It is anticipated that there will be limited closures during construction for beam setting.

5. Proposed Structure Configurations

Alignment & Profile: The proposed horizontal geometry of SR 823 is along a tangent for the entire length of both the left and right structures. The cross section is a normal crown. The proposed mainline profile grade line is located on the inside edge of pavement for both bridges. A 1700' vertical curve begins at station 122+50 with a PVI = 578.23, G1= -4.10%, G2=5.00%. The horizontal and vertical geometry for all alternatives considered are the same. Spill through embankment slopes will be a maximum of 2:1 in order to minimize bridge length and the roadway slopes shall be 2.5:1 to satisfy stability.

Structure Types: As per the Scope of Services, we investigated several bridge types and alternatives as part of this type study. Various span configurations were investigated and were refined to the layouts discussed below. Considering the horizontal clear zones on either side of the intersection a single span bridge and 3-span arrangements were considered for this study. The different alternatives discussed below modify the location and the number of piers as well as the type of superstructure.

A preliminary bridge construction cost has been prepared for the three (3) Alternatives (See Appendix A). The unit prices were based on ODOT's Summary of Contracts Awarded Year 2004 and were inflated 3.5% each year to the 2008 sale date, unless different unit prices were recommended by ODOT in August 2005. These estimates were used as a guide to select the most economical alternative. Maintenance costs such as painting, overlays and re-decking were included for each Alternative.

The structure types that were considered are outlined in the Structure Type Alternative Table below:

Ο () \bigcirc ()Ο Ο \bigcirc Ο \bigcirc \bigcirc \bigcirc \bigcirc Ο \bigcirc Ο \bigcirc \bigcirc Ο Ο Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc () \bigcirc Ο \bigcirc Ο

 \bigcirc

	STRUCTURE	TYPE ALTERNATIVE TABLE	
Structure Type Alternative	1	2	3
Superstructure Type Description	Prestressed Concrete Girders 72" Modified AASHTO Type 4 beams	60" Web steel plate girders A709 Grade 50 W	Prestressed Concrete Girders 54" AASHTO Type 4 beams
Proposed Beam Spacing	4 Spaces @ 9'-6"	4 Spaces @ 9'-6"	4 Spaces @ 9'-6"
No. of Spans	3 (97.5'-125'-97.5')	3 (97.5'-125'-97.5')	1 (81')
Abutment Type	Stub Type abutments on 2:1 spill-through embankments (Semi-Integral)	Stub Type abutments on 2:1 spill-through embankments(Semi-Integral)	Stub Type abutments on MSE wall supported embankments(Semi-Integral)
No. of Piers	2	2	None
Pier Type	T-type	T-type	N/A
Substructure Orientation	38°33'37" LF	38°33'37" LF	38°33'37" LF
Approximate Bridge Length	320'	320'	81'
Approximate Structure Depth			
Slab Haunch		8.75" 2"	8.5" 2"
Beam		2 68.0"	2 54.0"
Total	82.5" (6.875')	78.75" (6.5625')	64.5" (5.575')

Alternatives Discussion:

Alternative 1

This alternative is comprised of a 3-span structure with span lengths of 97'-6", 125'-0" and 97'-6" for an overall bridge length of 320'-0" from centerline bearings at abutments. The abutments and pier are oriented parallel to Slocum Avenue with a skew of 38°33'37". This span arrangement is similar to one presented in the initial types study but with shorter end spans in response to the comments received. Embankment slopes of 2:1 are used for both abutments. A retaining wall is required along Pershing Avenue to prevent the embankment from encroaching upon the road. The maximum height of the wall is approximately 30' and MSE wall construction is proposed due to their use in other areas on the project. The embankments are set to begin at the 15'-0" clear zone allowing for a traversable roadway ditch within that zone.

Both the forward and rear abutments will be semi-integral supported on H-piles as they are located in new embankment fill. The piles shall be HP14x73 with a design capacity of 95-tons per pile, driven to refusal on bedrock. The details of the abutments will follow ODOT Standard Construction drawings. An integral or fixed abutment was considered due to the 4% (approx.) grade that the structure will be built to except the 38° skew is in excess of the limits set forth in section 205.8 of the BDM.

The piers will consist of T-type piers, each supported on a HP14x73 H-piles, with a design capacity of 95 tons. It is recommended that one of the piers be a fixed design (i.e. fixed bearings) in order to resolve reactions associated with constructing the structure on a 4% (approx.) grade. The pier would also need to be designed for a proportional amount of the thermal movement in accordance with BDM section 205.9. The pier dimensions were assumed in order to estimate quantities and will need to be established in final design.

The preliminary design of this alternative consists of 5- 72" AASHTO Type 4 Modified prestressed beams, spaced at 9'-6" with 3'-5 3/4" overhangs. The design loading applied was HS-25 with Alternate Military Loading and a future wearing surface of 60 psf. The structures will be simple span for non-composite dead loads and continuous for superimposed and live loads. In accordance with the BDM the beams are also checked for a simply supported condition under all loads except the future wearing surface. This analysis indicates that concrete strengths of 6000 psi at release and 8000 psi final are required. Discussions with Ohio Prestressers Association indicate concrete strength and shipping feasibility were not of particular concern or reason for additional cost (please refer to the attached documentation). Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 44'-11 1/2". Deck thickness, including a 1" monolithic wearing surface, is 8 1/2". As an alternate to the beam design requiring 8000 psi concrete, a girder line could be added. The additional girder line would add approximately \$50,000 to the cost of the superstructure. The cost of the substructure would be nominally increased due to the increased dead load and the life cycle costs also increased due to the greater surface area to be sealed.

The initial bridge construction cost for Alternative 1 is estimated to be \$5,970,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$1,489,000, resulting in a total estimated ownership cost of \$7,459,000 in year 2008 dollars.

Alternative 2

Alternative 2 is similar to Alternative 1 except with a steel superstructure. The preliminary design of this alternative consists of 5 - 68" web Grade 50W plate girders, spaced at 9'-6" with 3'-5 3/4" deck overhangs. The design loading applied was HS-25 (Case I fatigue) with Alternate Military Loading and a future wearing surface of 60 psf. The differential deflections due to the total slab weight were investigated in accordance with section 302.2.7 of the BDM. The preliminary analysis indicates that a girder design that satisfies the strength requirements is stiff enough to minimize differential deflections between girders to less than $\frac{1}{2}$ ". The preliminary analysis only considered the weight of the concrete applied to the whole structure and not the pour sequence, which could cause higher deflections. Hybrid girders were not considered due to the stiffness requirements. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 44'-11 1/2". Deck thickness, including a 1" monolithic wearing surface, is 8 $\frac{3}{4}$ ".

The initial bridge construction cost for Alternative 2 is estimated to be \$5,330,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$2,889,000, resulting in a total estimated ownership cost of \$8,219,000 in year 2008 dollars.

Alternative 3

This alternative is comprised of a single span structure with a span length of 81'-0" from centerline bearings at abutments. The abutments are oriented with a 38°33'37" skew. The skew and span length was selected to attain the15'-0" clear zone from Slocum Ave. while minimizing the span length.

 \bigcirc \bigcirc \bigcirc

Embankment slopes are supported by MSE walls approximately 55'-60' in height. The MSE walls will be turned back 45° except at the north east quadrant of the bridge where the wall must protect relocated Pershing Avenue.

The abutments will be semi-integral type supported on H-piles as they are located in new embankment fill. The piles shall be HP14x73 with a design capacity of 95-tons per pile, driven to refusal on bedrock. The details of the abutments will follow ODOT Standard Construction drawings. Piles will need to be sleeved through the MSE wall embankment zone in accordance with the MSE wall Specifications. The structure will be constructed on a 4% (approx.) grade and the horizontal reaction should be resolved through the bearings and included in loadings given for the MSE wall. Intergral design was considered to create a "fixed" abutment; however, this would require movements within the reinforced soil and are appropriately prohibited in ODOT BDM 204.6.2.1. Due to calculated stability safety factors it is recommended the MSE walls be built in stages (see Appendix E), and to reduce primary consolidation time, wick drains should be used within the embankment area.

The preliminary design of this alternative consists of 5- 54" Type 4 prestressed beams, spaced at 9'-6" with 3'-5 3/4" overhangs. The design loading applied was HS-25 with Alternate Military Loading and a future wearing surface of 60 psf. Discussions with Ohio Prestressers Association indicate shipping feasibility is not of particular concern. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 44'-11 1/2". Deck thickness, including a 1" monolithic wearing surface, is 8 1/2".

The initial bridge construction cost for Alternative 3 is estimated to be \$6,750,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$416,000, resulting in a total estimated ownership cost of \$7,166,000 in year 2008 dollars.

6. Recommendations:

The attached cost analysis indicates that Alternative 3 has the lowest ownership cost and Alternative 2 has the lowest construction cost. Alternative 1 has a slightly higher total ownership cost than Alternative Three. However, in discussions with OSE staff, the costs to construct MSE walls of the height proposed may be underestimated. Additionally, the life cycle costs that have been calculated incorporate mostly superstructure costs. The life cycle costs for the substructures would likely be lower for conventional reinforced concrete substructures than for tall MSE walls. We are not aware of any specific life cycle costs for the substructures, particularly for newer MSE wall construction. Due to the lower initial construction cost presented, the anticipated higher maintenance on the MSE wall, as well as recent performance issues with tall MSE walls. Alternative 1 is recommended for further development. Based upon the above information and discussions, we recommend for both the left and right structures Structure Type Alternative 1, which consists of a three span with 72" AASHTO Type 4 Modified prestressed beams supported on semi-integral abutments and T-type piers. (See Appendix B for the Site Plan and Structure Details).

Our recommendation for Alternative 1 is based on the following items:

- A. Traditional construction methods with spill through slopes.
- B. Low total ownership costs (lowest of alternates not using MSE walls).

Tran Systems

so reet

S.R. 823 over Slocum Avenue L&R STRUCTURE TYPE STUDY

By: PJP

Checked: MSL

Date: 8/31/2006 Date: 9/5/2006

\bigcirc ALTERNATIVE COST SUMMARY

\bigcirc	Alternative No.	Span Arra No. Spans	angement Lengths	Total Span Length (ft.)	Framing Alternative	Proposed Stringer Section	Subtotal Superstructure	Subtotal Substructure	Structure Incidental	Structure Contingency	Total Alternative Const. Cost	Life Cycle Maintenance	Total Relative Ownership
-	110.	no. opans	Lenguis	Lengar (it.)	Alternative	Stringer Section	Cost	Cost	Cost (16%)	Cost (20%)	Const. Cost	Cost	Cost
\bigcirc	1	3	97.5'-125'-97.5'	320.00	5 Prestressed Concrete Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$2,167,000	\$2,122,000	\$686,200	\$995,000	\$5,970,000	\$1,489,000	\$7,459,000
$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	2	3	97.5'-125'-97.5'	320.00	5 Steel Girders /per BRIDGE	68" Web Grade 50W	\$2,017,000	\$1,815,000	\$613,100	\$889,000	\$5,330,000	\$2,889,000	\$8,219,000
\bigcirc	3	1	81'	81.00	5 Prestressed Concrete Girders /per BRIDGE	AASHTO Type 4 (54")	\$918,000	\$3,931,000	\$775,800	\$1,125,000	\$6,750,000	\$416,000	\$7,166,000
17													

NOTES:

Structure incidental cost allowance includes provision for structure excavation, porous backfill, sealing of concrete surfaces, 1.

structural steel painting, bearings, and crushed aggregate slope protection costs.

Estimated construction cost does not include existing structure removal (if any), which should be quantified seperately, if required. 2.

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

).								823-0.00 - P S.R. 823 over			S		
						STRUCTURE	TYPE STUDY - PRE				TIVE 1 - SUPERS	TRUCTURE	
					B Checke	y: PJP d: MSL				ate: 8/31/2006 ate: 9/5/2006		2	
SUPERS	TRUCTURE												
Alternative No.	Span Arrangeme No. Spans Len	nt gths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost		ming native	Prop Girder S	
) 1		125'-97.5'	320.00	322	1051	\$622,200	\$263,600	\$113,400	\$0	5 Prestress	ed Concrete er BRIDGE		HTO Type 4 (72")
)								COST SUPP	ORT CALCUL	ATIONS			
	and the second second							COST SUFF	UKT CALCOL	ATIONS			
Deck Cross	Parapets 1	Individual Area (sq. ft.) 4.26	Parapet Area (sq. ft.) 4.26				Prestressed Con Unit Costs:		Year 2005	Annual <u>Escalation</u>	Year 2008	No. <u>Required</u>	
l _{Slab:}	Left Bridge 0	4.77 (<u>ft.)</u> <u>W (ft.)</u> 71 44.96 71 44.96	4.77 Slab <u>Area</u> 31.8 31.8	Haunch & <u>Overhang Area</u> 3.2 3.2	Total Concrete Area (sq. ft.) 44.1 44.1		AASHTO Type IV E Pier Diaphragms Abutment Diaphrag Intermediate Diaphr Modified Type 4 I-B	ims ragms	\$1,800 ea. \$1,200 ea. \$905 ea. \$295 pert	3.5% 3.5% 3.5% t. 3.5%	\$2,000 ea. \$1,330 ea. \$1,000 ea. \$330 ea.	20 0 72 3200	\$40,000 \$0 \$72,000 \$1,056,000 \$1,168,000
Note:	Deck width is out to out 10% of deck area allowed	l for haunches a	and overhangs.										
QC/QA Con Unit Cost (S	Year An	nual lation	Year <u>2008</u>				Construction Co Percent of Super		= 09	% Due to Deck fo	rming, Screed and V	arying Girder Spac	es
Deck Parapets Weighted Ave Based on par of total concre	\$615.00 3. erage = rapet and slab percentage	5% 5%	\$563.00 <u>\$706.00</u> \$592.00				Reinforced Conc Unit Cost (\$/sq. y Length = 30 Area = 600	<u>yd.):</u> ft.	<mark>abs (T≔17'')</mark> Width = 9	D ft	Expansion Jo Unit Costs (\$/		Cost <u>Ratio</u>
Unit Cost (S	ted Reinforcing Steel \$/Ib): Ibs of reinforcing steel per	cubic yard of de	eck concrete				Approach Slabs	Year <u>2004</u> \$165.00	Annual Escalation 3.5%	Year <u>2008</u> \$189.00	Strip Seal Expar	nsion Joints	1.00 \$
Deck Reinforcing	Year An 2004 <u>Esca</u>	nual lation 5%	Year <u>2008</u> \$0.88				Approach Roadw Embankment fill Wick Drains Roadway incl. base Barrier (single faced) Barrier (dble faced)	0.00 cu.yd. 0.00 ft. 0.00 ft. 0.00 sq.yd. d) 0 ft.	Year <u>2005</u> \$4.00 \$1.00	Annual <u>Escalation</u> 3.5% 3.5% 3.5% 3.5% 3.5%	Year <u>2008</u> \$4.43 \$1.11 \$28.83 \$55.44 \$88.70		

 \bigcirc

0

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

Superstructure (Concrete Alt 1)

Prestressed	Subtotal
Concrete	Superstructure
Cost	Cost
6 4 400 000	A. 407 000
\$1,168,000	\$2,167,000

 \bigcirc

 \bigcirc

S.R. 823 over Slocum Avenue L&R STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 1 - SUBSTRUCTURE

					STRUCTURE TY	PE STUDY - PRES	STRESSED C	ONCRETE GIRDE	R ALTERNATIVE 1	- SUBSTRUCT	URE				
					By: PJP				Dat	e: 8/31/2006					
				Chec	ked: MSL				Dat						
SUBSTR	RUCTURE														
Alternative No.	Spa No. Sp	an Arrangement ans Lengths		ming mative	Prop Stringer		Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Wall Cost	Additional Crane Cost	Earthwork Cost	Subtotal Substructure Cost
	3	97.5'-125'-97.5'		Concrete Girders RIDGE	Modified AASH	ГО Туре 4 (72")	\$479,100	\$109,100	\$221,200	\$36,300	\$859,200	\$172,800	\$75,000	\$169,500	\$2,122,000
							COST SUPPO		NS						
Pier QC/Q	A Concrete, Cla	iss QSC1 Cost: (Spre	ad Footing)					Pile Foundatio	n Unit Cost (\$/ft.):	HE	9 14X73 Piles, Furnis	hed & Driven			
Component	Volume (cu. yd.)	Year <u>2004</u>	Annual <u>Escalation</u>	Year <u>2008</u>	Total <u>Cost</u>				Number of Piles		,	Total Pile <u>Length</u>			
Cap Stem Footings Total	310 416 992	\$421.00 \$421.00 \$421.00	3.5% 3.5% 3.5%	\$483.00 \$483.00 \$483.00	\$149,730 \$200,930 <u>\$128,480</u>				224	SEE QUANTITY	CALCULATIONS	21,480			
		as 0501 Casts (Definition	-1 0(ft)		\$479,100			Pile Foundatio	n Unit Cost (\$/ft.):	Year 2005 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year 2008			
Pier QC/Q	A Concrete, Cla	ss QSC1 Cost: (Drille	ed Shaft)						Furnished	\$26.47	3.5%	\$29.30			
Component Cap	Volume <u>(cu. yd.)</u> 0	Year <u>2004</u> \$421.00	Annual <u>Escalation</u> 3.5%	Year <u>2008</u> \$483.00	Total <u>Cost</u> \$0			Shaft Foundat	Driven Total <u>on Unit Cost (\$/ft.):</u>	\$9.62	3.5%	\$10.70 \$40.00			
Columns Footings Total	0	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$0 \$0 				Number of Shafts				Total Shaft <u>Length</u>		
Abutment	QC/QA COncret	e, Class QSC1 Cost:						Alt. 1	0	SEE QUANTITY	CALCULATIONS		0		
	Volume	Year	Annual	Year	Total										
Abutment	<u>(cu. yd.)</u> 398	<u>2004</u> \$421.00	Escalation 3.5%	<u>2008</u> \$483.00	<u>Cost</u> \$192,200			Shaft Foundat	on Unit Cost (\$/ft.): Escalation	2008		Temporary S	horing and Supp	ort	
Wingwalls	60	\$421.00	3.5%	\$483.00	\$29,000							Unit Costs (\$	/sq. ft.):		
Excavation	Note: n and Embankm	15% of abutment volume tent Costs:	allowed for wingwal	lls.				\$300.00 Cost of Shafts:	3.5% \$-	\$344.00			Temp. Shoring <u>Area (sq. ft.)</u>	Temp. Girder Support (lump sum)	
))		Year	Annual	Year	Total							Alt. 1	0	\$ -	
Component Embankmer Rock Excave	ation 0	<u>2005</u> \$2.00 \$6.00	Escalation 3.5% 3.5%	<u>2008</u> \$2.00 \$6.65	<u>Cost</u> \$68,500 \$0								Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year <u>2008</u>
Wick Drains Note: Struc		\$1.00 cluded in contingency es	3.5% simates.	\$1.11	\$101,000							Temporary Shoring	\$22.50	3.5%	\$25.80
D .					MSE Abutmen	<u>t Unit Cost (\$/sq. ft</u>						Choing			φ <u>2</u> 0.00
Unit Cost	ated Reinforcing (\$/Ib):					Total Area (sq. ft.)	Year 2005 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year 2008			Cofferdam	\$32.00	3.5%	\$36.70
		steel per cubic yard of p teel per cubic yard of ab			Alt. 1	3,120	\$50.00	3.5%	\$55.40		Additional Cra	ne Cost			
	Year <u>2004</u>	Annual <u>Escalation</u>	Year 2008								\$ 75,000				
Pier Abutment	\$0.77 \$0.77	3.5% 3.5%	\$0.88 \$0.88												

S.R. 823 over Slocum Avenue L&R

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 1 - QUANTITY CALCULATIONS

By: PJP Checked: MSL

Footing

 Volume
 Width
 Depth
 Length

 2496
 15
 4
 30.00

 3120
 15
 4
 30.00

5616 208

416

Total Volume

6392

7016

13409 497

994

Volume 1800

1800

3600 133

266

Pier Quantities

Stem

 Cap
 Stem

 Width
 Depth
 Area
 Volume
 Width
 Height
 Length

 5
 8.1
 40.50
 2096
 3
 32
 26.00

 5
 8.1
 40.50
 2096
 3
 40
 26.00

4193

Qty x 2 (L/R)

MSE Abutment Wall Quantities

0

16

Wall

Height Length Area Volume

195 3120.0 0.0

0.0

0.0 0.0

0.0

3120

155 310

8/31/2006 9/5/2006 Date: Date:

Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	20	605.0	480.0	125.0	2500
Pier 1	0	0	0	0	140	0	1	36	562.5	477	90.0	3240
Pier 2	0	0	0	0	140	0	1	36	550.5	477	75.0	2700
Pier 3	0	0	0	0	140	0	1	0	0	0	0.0	6
Pier 4	0	0	0	0	140	0	1	0	- O	0	0.0	
Pier 5	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 6	0	0	0	0	140	0	1	0	0	0	0.0	0
Pier 7	0	0	0	0	140	0	1	0	0	0.0	0.0	C
Fwd. Abut.	0	0	0	0	140	0	1	20	592.7	481.0	115.0	2300
TotaL								112				10740
							Qty x 2 (L/R)	224				21480

Abut Location	Length		Bac	kwall				Beam S	eat			Footing	g		Total Volume
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area	Volume	Width	Depth	Area	# Footi	Volume	rotal volume
Rear Abut	56.81	3	6.75	20.25			3	9.00	511	6	3	18	1	1023	2684
Fwd. Abut	56.81	3	6.75	20.25	1150	3	3	9.00	511	6	3	18	1	1023	2684
Total (Cu.Ft.)					2301				1023	3				2045	5369
Total (Cu.Yd.)					85				38	8				76	199
			Qty x 2 (L/R)	170				76	5				152	398

	36" Drilled Shafts for Piers														
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)			
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	0			
Pier 1	0	0	0	0	0	0	1	0	0	0	0.0	0			
Pier 2	0	0	0	0	0	0	1	0	0	0	0.0	0			
Pier 3	0	0	0	0	0	0	1. 1	0	0	0	0.0	0			
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	0			
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	0			
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	0			
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0	0			
Fwd. Abut.	0	10	0	0	0	0	1	0	0	0	0.0	0			
Total								0				0			

Superstr	ucture P/S Cor	icrete Qu	antities		Spacing				
Location	Type of girder	# Girders	Span Length	Total	Int.	No. of Int	Number of Int	Total	No. in
Location	Type of girder	# Girders	(ft.)	Length (ft.)	diaphragm	in span	Diap. 1 location	Span	
Span 1	MOD TYPE 4 72	10	97.5	975	24.38	8	1105	3	24
Span 2		10	125.0	1250	31.25	8	0	3	24
Span 3		10	97.5	975	24.38	8		3	24
Span 4		0	0.0	0	0.00				0
Span 5		0	0.0	0	0.00				0
Span 6		0	0.0	0	0.00				0
Span 7		0	0.0	0	0.00				0
Span 8		0	0.0	0	0.00				0
Span 9		0	0.0	0	Total				72
Total	MOD TYPE 4 72	8		3200	1				

C)
$\left(\right)$)
)
$\left(\right)$	\mathbf{D}
$\left(\right)$)
C)
C)
$\left(\right)$	
	\mathbf{D}

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Pier Location

Total (Cu.Ft.) Total (Cu.Yd.)

Abut Location

Rear Abut

RA Wing (R)

Fwd Abut FA Wing (L) FA Wing (R)

Total (Sq.Ft.)

RA Wing (L)

 Pier 1 (Piles)
 51.76

 Pier 2 (Piles)
 51.76

 Pier 3
 Pier 3

 Pier 5
 Pier 5

 Pier 6
 Pier 7

Length

				s		S.R. 82 PE STUDY - STEE	00 - PORTSM 23 over Slocum EL PLATE GIRDER	Avenue L&R	2 - SUPERSTR							
						By: PJP ed: MSL				e: 8/31/2006 e: 9/5/2006						
SUPER	RSTRUCTURE													Structural		
Alternative No.	re Span Arı No. Spans	rangement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost		ming native		posed r Section	Steel Weight (pounds)	Structural Steel Cost	Subtotal Superstructur Cost
2	3	97.5'-125'-97.5'	320	322	1076	\$636,800	\$269,800	\$113,400	\$0	5 Steel Girders	/per BRIDGE	68" Web	Grade 50W	836,394	\$996,900	\$2,017,000
							COST SUPPO	RT CALCULATIC	DNS							
Deck Cro Parapets:	oss-Sectional Area	Individual <u>5. Area (sq. ft.)</u>	Parapet Area (sq. ft.)				<u>Structural Steel</u> <u>Unit Costs (\$/lb.</u>		Cost <u>Ratio</u>	Year <u>2005</u>	Annual <u>Escalation</u>	Year <u>2008</u>				
Slab:	Parapets 1 Parapets 1 Left Bridge Right Bridge		4.26 4.77 Slab <u>Area</u> 32.8 32.8	Haunch & <u>Overhang Area</u> 3.3 3.3	Total Concrete Area <u>(sq. ft.)</u> 45.1 45.1		Rolled Beams - Gr Level 4 Plate Girde Level 5 Plate Girde	ers - Grade 50W	n/a n/a n/a	\$0.74 \$1.08 \$1.20	3.5% 3.5% 3.5%	\$0.82 \$1.19 \$1.33	Straight Girders Curved Girders			
	ote: Deck width is ou	t to out a allowed for haunches					Reinforced Com Unit Cost (\$/sq. Length = 30 Area = 60) ft.	labs (T=17") Width = 90	ft.						
	<u>t (\$/cu. yd):</u> Year <u>2004</u>	Annual <u>Escalation</u>	Year <u>2008</u>				Approach	Year <u>2004</u>	Annual Escalation	Year <u>2008</u>						
Deck Parapets Weighted <i>I</i>	\$491.00 \$615.00 Average =	3.5% 3.5%	\$563.00 <u>\$706.00</u> \$592.00				Slabs	\$165.00	3.5%	\$189.00					and the second se	
Based on p	parapet and slab per ncrete area	centages					Expansion Joint Unit Costs (\$/Lir	AND ADDRESS OF A DESCRIPTION OF A DESCRI	Cost <u>Ratio</u>	Year <u>2003</u>	Annual <u>Escalation</u>	Year <u>2008</u>				
<u>Epoxy Co</u> Unit Cost	<pre>pated Reinforcing t (\$/lb);</pre>	Steel					Strip Seal Expansi	on Joints	1.00	\$250.00	3.5%	\$318.07				
	85 lbs of reinforcing s	steel per cubic yard of de														
Deck Reinforcing	Year <u>2004</u> g \$0.77	Annual <u>Escalation</u> 3.5%	Year <u>2008</u> \$0.88				Approach Road Embankment fill Wick Drains Roadway incl. bas Barrier (single face	0.00 cu.yd 0.00 ft. ∋ 0.00 sq.yd	\$1.00	Annual <u>Escalation</u> 3.5% 3.5% 3.5% 3.5%	Year <u>2008</u> \$4.43 \$1.11 \$28.83 \$55.44					

S.R. 823 over Slocum Avenue L&R

					STRUCTUR		and the second second second second second	Slocum Avenu		RETRUCTURE					
								TE GIRDER ALTI				4			
					By Checked	r: PJP : MSL			Date Date	e: 8/31/2006 e: 9/5/2006					
SUBSTRUC	TURE														
							Pier	Pier	Abutment	Abutment	Pile	MSE	Additional		Cubbets
Alternative No.	Spar No. Spa	n Arrangement Ins Lengths		ming native	Propos Stringer S		Concrete Cost	Reinforcing Cost	Concrete Cost	Reinforcing Cost	File Foundation Cost	Wall Cost	Crane Cost	Earthwork Cost	Subtota Substructu Cost
2	3	97.5'-125'-97.5'	5 Steel Girders	s /per BRIDGE	68" Web Gra	ade 50W	\$409,600	\$93,300	\$221,200	\$36,300	\$781,200	\$172,800	\$0	\$101,000	\$1,815,00
							COST SUPP		DNS						
Pier QC/QA Co	oncrete, Clas	s QSC1 Cost: (Spre	ad Footing)					Pile Foundation	on Unit Cost (\$/ft.):	HI	P 14X73 Piles, Furnisl	hed & Driven			
	Volume	Year	Annual	Year	Alt 1 Total				Number of Piles			Total Pile			
<u>Component</u> Cap	<u>(cu. yd.)</u> 182	<u>2004</u> \$421.00	Escalation 3.5%	<u>2008</u> \$483.00	<u>Cost</u> \$87,910							Length			
Stem Footings Total Cost	400 266 848	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$193,200 <u>\$128,480</u> \$409,600				204	SEE QUANTITY	CALCULATIONS	19,530			
					\$409,600			Pile Foundation	on Unit Cost (\$/ft.):	Year 2005 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year <u>2008</u>			
Pier QC/QA Co	oncrete, Clas	s QSC1 Cost: (Drille	ed Shaft)								Loodiditori	2000			
	Volume	Year	Annual	Year	Alt 1 Total				Furnished Driven	\$26.47 \$9.62	3.5% 3.5%	\$29.30 \$10.70			
Component	(cu. yd.)	<u>2004</u>	Escalation	2008	Cost				Total	\$3.02	0.076	\$40.00			
Cap Columns	0	\$421.00	3.5%	\$483.00	\$0			Shaft Foundat	tion Unit Cost (\$/ft.	<u>):</u> 36	" Drilled Shaft				
Footings	0	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$0 \$0				Number of Shafts				Total Shaft		
Total Cost				A. Constant	\$0				Number of Shans				Length		
Abutment QC/0	QA Concrete	, Class QSC1 Cost:													
	Volume	Year	Annual	Year	Total			Alt. 2	0	SEE QUANTITY	CALCULATIONS		0		
Component	(cu. yd.)	<u>2004</u>	Escalation	<u>2008</u>	<u>Cost</u>			Shaft Foundat	tion Unit Cost (\$/ft.						
Abutment	398	\$421.00	3.5%	\$483.00	\$192,200			Unit Cost	Escalation			Tomporany S	boring and Supr	ort	
Wingwalls	60	\$421.00	3.5%	\$483.00	\$29,000			01111 00051	Listalition	2008		Unit Costs (\$	horing and Supp	<u>1011</u>	
at an								\$300.00	3.5%	\$344.00		<u>Unit 00313 (</u>	Temp. Shoring	Temp. Girder	
Excavation and		5% of abutment volume	allowed for wingwall	ls.					《圣教》 《李教》				Area (sq. ft.)	Support (lump sum)	
		ant Costs.						Cost of Shafts:	\$ -						
		Year	Annual	Year	Total							Alt. 2	0	\$ -	
Component	Quantity	2005	Escalation	2008	Cost										
Embankment	34231	\$2.00	3.5%	\$2.00	\$68,500								Year 2004	Annual	Year
Rock Excavation		\$6.00	3.5%	\$6.65	\$0								Unit Cost	Escalation	2008
Wick Drains Note: Structure I	91000 Excavation inc	\$1.00 luded in contingency es	3.5% simates.	\$1.11	\$101,000							Temporary		2.50/	
				14 M								Shoring Cofferdam	\$22.50 \$32.00	3.5% 3.5%	\$25.80 \$36.70
Epoxy Coated		<u>Steel</u>			MSE Abutment	Unit Cost (\$/sq	<u>. ft.):</u>								\$00.10
Unit Cost (\$/Ib)	<u> </u>					Total Area	Year 2005	Annual	Year						
Assume 125 lbs of	of reinforcing s	teel per cubic yard of pi eel per cubic yard of abi	er concrete.			<u>(sq. ft.)</u>	Unit Cost	Escalation	2008						
Assume so ins of	remorcing ste	er per cubic yard of abl	ument concrete.		Alt. 2	3,120	\$50.00	2 50/	¢EE 40			MT .			
	Year	Annual	Year		Alt. Z	5,120	\$20.00	3.5%	\$55.40		Additional Com				
	2004	Escalation	<u>2008</u>								Additional Crar	<u>le Cost</u>			
				-							\$ -	and the			
Pier	\$0.77 \$0.77	3.5%	\$0.88	Notes and the second											
Abutment	\$0.77	3.5%	\$0.88												

Total Volume

5427 6027

11454

424

848

398

Volume

1800 1800

3600

133

266

152

S.R. 823 over Slocum Avenue L&R

STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 2 - QUANTITY CALCULATIONS

By: PJP Checked: MSL

 Volume
 Width
 Depth
 Length

 2400
 15
 4
 30.00

 3000
 15
 4
 30.00

Date: 8/31/2006 Date: 9/5/2006

	Pile Quantities													
Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)		
Rear Abut.	0	0	0	0	140	0	1	18	605.0	480.0	125.0	2250		
Pier 1	0	0	0	0	140	0	1	33	562.5	477	90.0	2970		
Pier 2	0	0	0	0	140	0	1	33	550.5	477	75.0	2475		
Pier 3	0	0	0	0	140	0	1	0	0	0	0.0	0		
Pier 4	0	0	0	0	140	0	1	0	0	0	0.0	0		
Pier 5	0	0	0	0	140	0	1	0	0	0	0.0			
Pier 6	0	0	0	0	140	0	1	0	0	0	0.0	0		
Pier 7	0	0	0	0	140	0	1	0	0	0.0	0.0	0		
Fwd. Abut.	0	0	0	0	140	0	1	18	592.7	481.0	115.0	2070		
Total								102				9765		
							Qty x 2 (L/R)	204			5-	19530		

							Abutm	ent Quantiti	es						
Abut Location	Length		Bac	kwall				Beam Seat				Footin	g		Total Volume
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area	Volume	Width	Depth	Area	# Footin	Volume	Total volume
Rear Abut	56.81	3	6.75	20.25	1150	3	3	9.00	511	6	3	18	1	1023	2684
Fwd. Abut	56.81	3	6.75	20.25	1150	3	3	9.00	511	6	3	18	1	1023	2684
Total (Cu.Ft.)					2301				1023					2045	5369
Total (Cu.Yd.)					85				38					76	199

Pier Quantities

 Length
 Cap
 Stem

 50.50
 3
 8.1
 24.30
 1227
 3
 32
 25.00

 50.50
 3
 8.1
 24.30
 1227
 3
 40
 25.00

Qty x 2 (L/R)

Qty x 2 (L/R)

Wall

0

0

195 3120.0 0.0

0.0

0.0 0.0

0.0

3120

Height Length Area

MSE Abutment Wall Quantities

0

0

16

0

2454

91

182

170

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Abut Location

Rear Abut RA Wing (L) RA Wing (R)

Fwd Abut FA Wing (L) FA Wing (R)

Total (Sq.Ft.)

Pier Location

Pier 1 (Pile) Pier 2 (Pile) Pier 3 Pier 4 Pier 5 Pier 6 Pier 7

Total (Cu.Ft.) Total (Cu.Yd.)

S					
	Volume				
0.C					
0.0					
0.0 0.0 0.0					

5400 200

400

76

	36" Drilled Shafts for Piers													
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)		
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	0		
Pier 1	0	0	0	0	0	0	1	0	0	0	2.0	0		
Pier 2	0	0	0	0	0	0	1	0	0	0	2.0	0		
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	0		
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	0		
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	0		
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	0		
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0	and extraction of the O		
Fwd. Abut.	0	10	0	0	0	0	1	0	0	0	0.0	0		
Total								0				0		

	Superstruc	# Girders Span Length We 1 10 97.5 2 1 10 125.0 3				
Location	Wt.of girder (lb)/ft			Total Weight		
Span 1	261	10	97.5	254839		
Span 2	261	10	125.0	326716		
Span 3	261	10	97.5	254839		
Span 4	0	0	0	0		
Span 5	0	0	0	0		
Span 6	0	0	0	0		
Span 7	0	0	0	0		
Span 8	0	0	0	0		
Total				836394		

Includes 5' of additional length into rock

				STRUC	CTURE TYPE S	S.R. 823 over	Slocum Aven		TERNATIVE 3 - S	UPERSTRUCTU	RE
				B Checke	iy: PJP d: MSL				ate: 8/31/2006 ate: 9/5/2006		
SUPERSTRUC	ſURE										
	pan Arrangement Spans Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost		ming mative	Propos Stringer Se
3 1	81'	81	83	271	\$160,400	\$67,900	\$113,400	\$350,000	5 Prestressed C /per BF		AASHTO Ty
						COS	ST SUPPORT CA	LCULATIONS			
Deck Cross-Section Parapets: Parape Parape Slab: Left Brid Right Brid	Individual <u>No.</u> <u>Area (sq. ft.)</u> ets 1 4.26 ets 1 4.77 <u>T (ft.)</u> <u>W (ft.)</u> ge 0.71 44.96	31.8	Haunch & <u>Overhang Area</u> 3.2 3.2	Total Concrete Area <u>(sq. ft.)</u> 44.1 44.1		Prestressed Co Unit Costs: AASHTO Type IV Pier Diaphragms Abutment Diaphra Intermediate Diap Type 4 I-Beams (S	agms bhragms	Year 2005 \$1,800 ea. \$1,200 ea. \$905 ea. \$225 per	. 3.5% . 3.5%	Year 2008 \$2,000 ea. \$1,330 ea. \$1,000 ea. \$250 ea.	No. <u>Required</u> 0 0 24 810
Note: Deck wic 10% of d	Ith is out to out eck area allowed for haunches	and overhangs.				Reinforced Con Unit Cost (\$/sq Length = 3 Area = 60	0 ft.	ilabs (T=17") Width = 9	90 ft		
QC/QA Concrete, C Unit Cost (\$/cu. yd) Year 2004		Year <u>2008</u>				Approach Slabs	Year <u>2004</u> \$165.00	Annual <u>Escalation</u> 3.5%	Year <u>2008</u> \$189.00		
Deck \$491.0 Parapets \$615.0 Weighted Average = Based on parapet and of total concrete area	0 3.5%	\$563.00 <u>\$706.00</u> \$592.00				<u>Expansion Joir</u> <u>Unit Costs (\$/L</u>		Cost <u>Ratio</u>	Year <u>2005</u>	Annual <u>Escalation</u>	Year <u>2008</u>
						Strip Seal Expans		1.00	\$250.00	3.5%	\$277.18
Epoxy Coated Rein Unit Cost (\$/Ib): Assume 285 lbs of rein	forcing steel per cubic yard of d	eck concrete				Strip Seal Expans	sion Joints Length	0 ft.			
Year <u>2004</u> Deck Reinforcing \$0.77	Annual <u>Escalation</u>	Year <u>2008</u> \$0.88				Approach Road Embankment fill Wick Drains Roadway incl. bas Barrier (single fac Barrier (dble faced	75,500 cu.yc 64,750 fl. se 2,178 sq.yc ed) 478 ft.	\$1.00	Annual <u>Escalation</u> 3.5% 3.5% 3.5% 3.5% 3.5%	Year 2008 \$2.22 \$1.11 \$28.83 \$55.44 \$88.70	

 \bigcirc

 \bigcirc

S.R. 823 over Slocum Avenue L&R STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 3 - SUBSTRUCTURE

/					STRUCTURE TY	PE STUDY - PF	RESTRESSED CO	DNCRETE GIRDE	R ALTERNATIVE	3 - SUBSTR	UCTURE
)					B Checke	y: PJP d: MSL			Date Date		
SUBSTRU	ICTURE										
Alternative No.	Span A No. Spans	rrangement Lengths		ming native	Propo Stringer		Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost
3	1	81'		Concrete Girders RIDGE	AASHTO T	ype 4 (54")	\$0	\$0	\$180,000	\$29,500	\$429,300
							COST SUPPO		ONS		
Pier QC/QA C	Concrete, Class	QSC1 Cost: (Spre	ad Footing)					Pile Foundatio	on Unit Cost (\$/ft.):	I	IP 14X73 Piles, Furni
<u>Component</u> Cap	Volume <u>(cu. yd.)</u> 0	Year <u>2004</u> \$421.00	Annual <u>Escalation</u> 3.5%	Year <u>2008</u>	Alt 1 Total <u>Cost</u>				Number of Piles		
Stem Footings Total	0 0 0	\$421.00 \$421.00 \$421.00	3.5% 3.5% 3.5%	\$483.00 \$483.00 \$483.00	\$0 \$0 \$0 \$0			Alt. 3	72	SEE QUANTI	Y CALCULATIONS
		QSC1 Cost: (Drille	ed Shaff)		Ψυ			<u>Pile Foundation</u>	on Unit Cost (\$/ft.):	Year 2005 <u>Unit Cost</u>	Annual <u>Escalation</u>
	Volume	Year	Annual	Year	Alt 1 Total				Furnished Driven	\$31.00 \$12.00	3.5% 3.5%
<u>Component</u> Cap Columns	<u>(cu. yd.)</u> 0 0	<u>2004</u> \$421.00 \$421.00	<u>Escalation</u> 3.5% 3.5%	<u>2008</u> \$483.00 \$483.00	<u>Cost</u> \$0 \$0			<u>Shaft Foundat</u>	Total ion Unit Cost (\$/ft.)	<u>i:</u> 3	6" Drilled Shaft
Footings Total	0	\$421.00	3.5%	\$483.00	\$0 \$0				Number of Shafts		
Abutment QC		Class QSC1 Cost:						Alt. 3	0	SEE QUANTI	Y CALCULATIONS
Component	Volume	Year	Annual	Year	Total						
Component Abutment	<u>(cu. yd.)</u> 324	<u>2004</u> \$421.00	Escalation 3.5%	<u>2008</u> \$483.00	Cost				ion Unit Cost (\$/ft.)		
Wingwalls	49	\$421.00	3.5%	\$483.00	\$156,500 \$23,500			Unit Cost	Escalation	2008	
J.					\$20,000			\$300.00	4.5%	\$358.00	
		of abutment volume	allowed for wingwal	lls.				Cost of Shafts:	\$ -		
Excavation a	nd Embankmen	t Costs:									
		Year	Annual	Year	Total						
Component	Quantity	2005	Escalation	2008	Cost						
Embankment Rock Excavatio	0 0 nc	\$4.00 \$6.00	3.5% 3.5%	\$4.00	\$0 50						
Wick Drains	57540	\$0.00	3.5%	\$6.65 \$1.11	\$0 \$63,900						
		led in contingency es	simates.	φ1.11							
Epoxy Coater	d Reinforcing St	eel			MSE Abutment	t Unit Cost (\$/sq Total Area	and the second	A			
Unit Cost (\$/II		<u></u>				(sq. ft.)	Year 2005	Annual	Year		
		el per cubic yard of p	ier concrete.			<u>(sq. n.)</u>	Unit Cost	Escalation	2008		
Assume 90 lbs	of reinforcing steel	per cubic yard of ab	utment concrete.		Alt. 3	33,478	\$85.00	3.5%	\$94.20		Additional Cr
	Year <u>2004</u>	Annual Escalation	Year <u>2008</u>								\$ 75,000
Pier Abutment	\$0.77 \$0.77	3.5% 3.5%	\$0.88 \$0.88								

 \bigcirc

 \bigcirc

	MSE Abutment & Wingwall Cost	Additional Crane Cost	Earthwork Cost	Subtotal Substructur Cost
	\$3,153,581	\$75,000	\$63,900	\$3,931,000
she	d & Driven			
	Total Pile Length			
	9,000			
	Year 2008			
	\$34.40 <u>\$13.30</u> \$47.70	~		
		Total Shaft		
		Length		
		0		
	<u>Temporary SI</u> Unit Costs (\$/	noring and Suppo	<u>rt</u>	
	<u>Offic Obsta (4</u>	Temp. Shoring Area (sq. ft.)	Temp. Girder <u>Support (lump sum)</u>	
	Alt. 3	0	\$-	
		Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year <u>2008</u>
	Temporary Shoring Cofferdam	\$22.50 \$32.00	- 3.5% 3.5%	\$25.80 \$36.70

Crane Cost

S.R. 823 over Slocum Avenue L&R STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 3 - QUANTITY CALCULATIONS

By: PJP Checked: MSL

Date: 8/31/2006 Date: 9/5/2006

		the second second				Pile Qu	antities					1. La Cardination
Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	18	599.6	477.0	125.0	2250
Pier 1	0	0	0	0	140	0	1	0	0	0	2.0	0
Pier 2	0	0	0	0	140	0	1	0	0	0	2.0	0
Pier 3	0	0	0	0	140	0	1	0	0	0	2.0	C C
Pier 4	0	0	0	0	140	0	1	0	0	0	2.0	0
Pier 5	0	0	0	0	140	0	1	0	0	0	2.0	0
Pier 6	0	0	0	0	140	0	1	0	0	0	2.0	0
Pier 7	0	0	0	0	140	0	18 I	0	0	0	2.0	0
Fwd. Abut.	0	0	0	0	140	0	1	18	602.8	481	125.0	2250
Total								36				4500
							Qty x 2 (L/R)	72				9000

	Load/girder			Subst Wt	Pile			Tetel			1	T-1-IOL-GI
Location	(Kips)	# Girders	Total Load	(kips)	Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 1	0	0	0	0	0	0	1	0	0	0	2.0	0
Pier 2	0	0	. 0	0	0	0	1	0	0	0	2.0	0
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0	0
Fwd. Abut.	0	10	0	0	0	0	1	0	0	0	0.0	0
Total								0				0

Superstr	ucture P/S	Concrete	Quantities		Spacing				
Location	Type of girder	# Girders	Span Length (ft.)	Total Length (ft.)	Int. diaphragm	No. of Int in span	Number of Int Diap. 1 location	10.11 TO TAX	No. in
Span 1	TYPE 4 54	10	81.0	810			Distance of the second se	3	24
Span 2		0	0.0	0	0.00				0
Span 3		0	0.0	0	0.00				0
Span 4		0	0.0	0	0.00				0
Span 5		0	0.0	0	0.00				0
Span 6		0	0.0	0	0.00				0
Span 7		0	0.0	0	0.00				0
Span 8		0	0.0	0	0.00				0
Span 9		0	0.0	0	Total				24
Total	TYPE 4 54	8		810]				

Pier Location	Length		C	ap				Stem				Footin	g	Total Volume
Fier Location	Lengui	Width	Depth	Area	Volume	Width	Height	Length	Volume	Width	Depth	Length	Volume	lotal volum
Pier 1	0	0	0	0.00		0	0	19.00	0	0	0	0.00	0	
Pier 2	0	0	0	0.00	0	0	0	19.00	0	0	0	0.00	0	
Pier 3	0	0	0	0.00	0	0	0	19.00	0	0	0	0.00	0	
Pier 4								P 1						
Pier 5								14						
Pier 6			P											
Pier 7														
Total (Cu.Ft.)					0				0				0	
Total (Cu.Yd.)					0				0				0	
			Qty x 2 (L/R)	0				0				0	

Abut Location	Length		Bac	kwall				Beam Sea	at			Footin	g		Total Volume
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area	Volume	Width	Depth	Area	# Footin	Volume	Total volume
Rear Abut	56.81	3	5.3	15.90	903	3	1.5	4.50	256	6	3	18	1	1023	218
Fwd. Abut	56.81	3	5.3	15.90	903	3	1.5	4.50	256	6	3	18	1	1023	218
Total (Cu.Ft.)					1807				511					2045	436
Total (Cu.Yd.)					67				19					76	16:
			Qty x 2 (L/R)	134				38					152	324

Abut Location		W	all	
	Height	Length	Area	Volume
Rear Abut	53	130	6890	
RA Wing (L)	48	90	4320	
RA Wing (R)	43	120	5160	
Fwd Abut	51	140	7140	
FA Wing (L)	40	120	4800	
FA Wing (R)	26.5	195	5168	
Total (Sq.Ft.)			33478	

 \bigcirc

S.R. 823 over Slocum Avenue L&R STRUCTURE TYPE STUDY - LIFE CYCLE COSTS

By: PJP Checked: MSL

Date: 8/31/2006 Date: 9/5/2006

			ANCE COS		Struc	tural Steel Pain	tine *		uperstructure Sea	line	A	ach Douomant Da	au ufa ai a a							
					Cost	Number of	Total	Cost	Number of	Total	Cost	bach Pavement Res Number of	Total							
Alt. No.	Span Arra No. Spans			ming native	Per Cycle	Maintenance Cycles	Life Cycle Cost	Per Cycle	Maintenance Cycles	Life Cycle Cost	Per Cycle	Maintenance Cycles	Life Cycle Cost							
1	3	320.00	² restressed Concret	te Girders /per BRIDGE	E \$0	0	\$0	\$85,900	2	\$171,800	\$0	10	\$0							
2	3	320.00	5 Steel Girder	s /per BRIDGE	\$775,390	2	\$1,550,780	\$0	0	\$0	\$0	10	\$0							
3	1	81.00	Prestressed Concret	te Girders /per BRIDGE	E \$0	ο	\$0	\$16,100	2	\$32,200	\$4,600	10	\$46,000							
						E	Bridge Deck Overl	av (5)				Bridge Red	leckina (5)			Superstructure	Total		Total	
					Deck		Deck	Number of	Total	Deck	Deck	Deck	Deck	Number of	Total	Life Cycle	Initial		Relative	
Alt.	Span Arra	angement	Fran	ming	Demo &	Deck	Joint	Maintenance	Life Cycle	Concrete	Reinforcing	Joint	Removal	Maintenance	Life Cycle	Maintenance	Constructio	on	Ownership	
No.	No. Spans	Lengths	Alteri	native	Chipping	Overlay	Gland (2)	Cycles	Cost	Cost (3)	Cost (3)	Cost (2)	Cost	Cycles	Cost	Cost (1)	Cost		Cost	
1	3	320	² restressed Concret	te Girders /per BRIDGE	E \$87,200	\$105,800	n/a	1	\$193,000	\$622,200	\$263,600	n/a	\$238,200	1	\$1,124,000	\$1,489,000	\$5,970,000	0	\$7,459,000	
2	3	320	5 Steel Girden	s /per BRIDGE	\$87,200	\$105,800	n/a	1	\$193,000	\$636,800	\$269,800	n/a	\$238,200	1	\$1,144,800	\$2,889,000	\$5,330,000	D	\$8,219,000	
3	1	81	Prestressed Concret	te Girders /per BRIDG	E \$22,100	\$26,800	\$12,819	1	\$48,900	\$160,400	\$67,900	\$0	\$60,300	1	\$288,600	\$416,000	\$6,750,000	D	\$7,166,000	
	iteel Painting:								Bridge Redec						NOTES:					
Structural Ste	el Area:								Bridge Deck Joi	nt Cost per foot:	22	2 2	33			enance costs assume a	75 -ye	ear structure life,	and are expressed i	in present value
	Web	No.	Total Span	Est. Ave. Bot. Flange I	Nominal Exposed Girder	Secondary Member	Total Exposed Steel		Structural Expan	nsion Joint Including	Year 2005	Annual Escalation	Year <u>2008</u>		(2008 constructi	on year) dollars.				
	Depth (in.)	Stringers	Length (ft.)	Width (in.)	Area (sq. ft.)	Allowance	Area (sq. ft.)		Elastomeric Stri		\$250.00	3.5%	\$277.18	3	2. Bridges are ass	umed to have semi-integral abo	utments, therefo	ore no strip seal d	leck joints will be rec	quired except for Alt. 3.
Alt. 2	68	10	320.00	15.40	48,585	20%	58,300			Bridge Width	No. Joints				 See Superstruct 	ure Cost sheet.				
Painting Cost	por og ft :								Alt. 1	113.44	0			8	4. See Alternative	Cost Summary sheet.				
Painting Cost	Year	Annual	Year						Alt. 2 Alt. 3	113.44 113.44	0				5. Assume bridge (deck overlay at Year 25 and br	idae deck replac	cement at Year 5	i0.	
11 - 11 M Marriel	2005	Escalation	2008												Assume superst	ructures are painted or sealed	on a 25-year re			
Prep. Prime	\$6.75 \$1.75	3.5% 3.5%	\$7.48 \$1.94						Bridge Deck Re	moval Cost:					Assume comple	te bridge replacement at Year	75.			
Intermed.	\$1.75	3.5%	\$1.94							Deck Area (3)	Year	Deck Removal		j	6. Life cycle mainte	enance cost differences are as	sumed to be pre	edominately a fur	nction of superstruct	ure maintenance costs.
Finish Total	\$1.75 \$12.00	3.5%	\$1.94 \$13.30							<u>(sq. ft.)</u>	2008	Cost			Consequently, s	ubstructure lifecycle maintenar	nce costs are no	t included in this	analysis.	
									Alt. 1	28,773	\$8.28	\$238,200								
Superstruct	ure Sealing:								Alt. 2 Alt. 3	28,773 7,283	\$8.28 \$8.28	\$238,200 \$60,300				vement Resurfacing: etual Asphalt Pavement:				
PS Concrete	I-Beam Area:								Alt. O	1,200	ψ0.20	400,000			Resurfacing Uni					
72" Modified	AASHTO Type 4 H V	Diag	No Total						Bridge Deck	Overlay (Item 949)								Year	Annual	Year
Bot. Flange	<u>□</u> ⊻ 26	<u>Diag.</u>	<u>No. Total</u> 1 26.00							Overlay (Item 848): SC Overlay Cost per sq. y	vd.:				Pavement Plani	ng, Asphalt Concrete, per sq. y	d.	2004 \$0.98	Escalation 3.5%	<u>2008</u> \$1.12
1751	8	millionation	2 16.00								Year	Annual	Year		(Item 254)					8
Lower Fillets Web	9 9 46	12.73	2 25.46 2 92.00							dified Concrete Overlay molition (1.25" thick)	2004 \$25.58	Escalation 3.5%	<u>2008</u> \$29.35					Year	Annual	Year
Upper Fillets	3 3		2 8.49						Surface Prepara	ation								2004	Escalation	2008
Top Flange	11 2	11.18	2 22.36 2 8.00						Using Hydroden	nolition	\$22.85	3.5%	\$26.22		Asphalt Concret	e Surface Course, per cu. yd.		\$72.00	3.5%	\$82.62
Total Expose	d Perimeter		198.30 in.						Hand Chipping		\$37.07	3.5%	\$42.54		an constant and the					
54" AASHTO	Type 4								Bridge Deck MS	SC Overlay Cost per cu. y	/d ·				Asphalt Resurfa	Approach	Approach			
	± ⊻	Diag.	<u>No. Total</u>						Micro Silica Mod	dified Concrete Overlay						Roadway	Roadway		Wearing Course	Wearing Course
Bot. Flange	26 8		1 26.00 2 16.00						(Variable Thickn	ness), Material Only	\$144.00	3.5%	\$165.24			Length (ft.) (4)	Width (ft.)	Area (sq. yd.)) Thickness (in.)	Volume (cu. yd.)
Lower Fillets	9 9	12.73	2 25.46									Hand	Variable		Alt. 1	0.0	38.0	0	1.50	0.0
Web Upper Fillet	23 6 6	8.49	2 46.00 2 16.97							Deck Area (3)	Deck Area	Chipping	Thickness Repair (cu. vd.)		Alt. 2 Alt. 3	0.0 239.0	38.0 38.0	0 1,009	1.50 1.50	0.0 42.0
Top Flange	8	0.40	2 <u>16.00</u> in.							<u>(sq. ft.)</u>	<u>(sq. yd.)</u>	<u>(sq. yd.)</u>	<u>Repair (cu. yd.)</u>		AIL 3	209.0	30.0	1,009	1,50	42.0
Total Expose PS Concrete			146.43						Alt. 1	28,773	3,197	80	72							
PS Concrete	Alea.	Total	Nominal	Secondary	Total				Alt. 2 Alt. 3	28,773 7,283	3,197 809	80 20	72 18							
	No. <u>Stringers</u>	Span <u>Length (ft.</u>	Exposed Beam Area (sq. ft.)		xposed Concrete Area (sq. yd.)															
Alt. 1	10	320.00	52,880	10%	6,460				Assume 25% of	f deck area requires remo	oval to depth of	4.5" (3.25" addition	al removal).							
Alt. 3	10	81.00	9,884	10%	1,210				Bridge Deck Joi	int Gland Replacement C										
Souling Cast											Year	Annual	Year							
Sealing Cost	per sq. ya.:	Year	Annual	Year					Elastomeric Stri	ip Seal Gland	<u>2005</u> \$62.50	Escalation 3.5%	2008 \$69.29							
120 112 P	2	2005	Escalation	2008						57 										
Epoxy-Uretha	ne Sealer	\$12.00	3.5%	\$13.30					Assume gland r	replacement cost equals 2	25% of original	deck joint construct	tion cost.							

 \bigcirc

 \bigcirc

0

 \bigcirc

Ο

 \bigcirc

 \bigcirc

Ο

Ο

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

.

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \circ \bigcirc \bigcirc Ο \bigcirc \bigcirc \odot \bigcirc 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 \bigcirc

SUPERSTRUCTU	
JUPERSTRUCTU	RE DEFIN
ITEM	72" MODIFIED AASHTO TYPE 4 BEAM
SLAB (INCLUDING WEARING SURFACE)	8.5″
HAUNCH (BOTTOM OF SLAB TO TOP OF FLANGE)	2*
GIRDER DEPTH	72*
TOP OF WEARING SURFACE TO BOTTOM OF GIRDER FLANGE (INCH)	82.5*
TOP OF WEARING SURFACE TO BOTTOM OF GIRDER FLANGE (FEET)	6.875'

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

O

O

O

 \bigcirc

 \bigcirc

 \bigcirc

0 0

Ο

 \bigcirc \circ

0

ABUTMENT SECTION

······································		
		DESIGN AGENCY WASHING SVOLGHINS
ROACH SLAB		DESIGNED DANNIN REVIEWED DATE PJP CAS JRC 08/31/06 CNECKED AEVISED STRUCTORE FILE NUMBER MISL
BACKFILL TER FABRIC O POLYSTYRENE FILLER ABLE FORMS IDE TION JOINT * DIA. PERFORATED C.P.P		TYPICAL ABUTMENT SECTION ALTERNATIVE I BRIDGE NO. SCI-823-XXXX S.R. 823 OVER SLOCUM AVENUE (T.R. 248)
		SCI-823-0.00 PID 19415
	<u> </u>	

Ohio Prestressers Association

51 Mallard Point Hebron Ohio 43025-9688 Phone: 614-456-3012 Email: mekllc@columbus.rr.com

April 18, 2006

Patrick Plews, El TranSystems Corporation 720 E. Pete Rose Way Suite 360 Cincinnati Ohio 45202

Re: Portsmouth Bypass, AASHTO Modified Type 4 I-beams 72"

Dear Patrick:

Thank you for the opportunity to provide input for your prestressed concrete bridge design.

Pursuant to Email correspondence, and review of the information you sent to Prestress Services Industries, LLC, and United Precast, Inc., on behalf of those member producers, I offer the following:

- 1. Producing 72" AASHTO Modified Type 4 Prestressed Concrete I-Beams is no problem for either member producer at lengths of 150'-0".
- 2. Release strength of 6,000 psi and final strength of 8,000 psi is not a problem for either producer and will not add additional cost to the beams.
- 3. It is highly recommended that a 4' top flange is used to add stability for shipping.
- 4. The producers do not anticipate any unusual problems shipping beams to the site. PSI scouted the route and can deliver, but <u>only from the East side</u> taking US23 to 728 East which becomes Lucasville/Minford Rd. They will continue east to CR 46/High Street (Minford) south to project area.
- Budget pricing for your beams ranges from \$258/If to \$300/If furnished and erected. Budget pricing is developed from actual historical bridges sold by ODOT over the past 2 years.

Both Ohio Prestressers Association members are looking forward to competing on this project when it comes to sale. If you need any additional information, please call.

Sincerely, Ohio Prestressers Association

Mary Ellen Kimberlin Executive Director

APPENDIX C Vertical Clearance Calculations

Tran Systems >	Made B Checked B			08/30/06 08/30/06		P403030064
	VERTIC	AL CLEARAN	CE C/	LCULATIO	NS	
b Name			Struct	ure		
escription <u>S.R. 823 OVER SL</u>	OCUM AVENUE		PID #			····
Alternative 1 - 5-72" Type 4 Modi	fied Concrete I	Beams, Three S	<u>pan</u>	F	Point Location:	A
Adjstment for Cross Slope				······		
Comment	Grade	Offset				
Profile grade line to critical pt.:		< <u> </u>		-0.544		
		Total Adjustment	= -	-0.54		
		··				
Superstructure Depth		·····				······································
Comment	<u>Depth (in)</u>	Depth (ft)				
Deck Thickness:	8.5	0.71				
Haunch:	2	0.17				
	72	_				
Girder or Beam Depth:	82.5	<u> </u>				
			_	C 00		
	Total Superst	ructure Depth (ft)	=	6.88		
Vertical Clearance at Critical Po	int					<u></u>
	Station		_	102100 86		
		@ Critical Point		123+08.86 41.5' LEFT		
		@ Critical Point n at Critical Point				
		opes to Beam CL		610.76 -0.54		
-		•		610.22		
100 01	Deck Elevation	@ Critical Point	-	010.22		
	Total Sup	erstructure Depth	=	-6.88		
Bottom of E	Beam Elevation	@ Critical Point	=	603.34		
Approximate Top of E	xisting Ground	@ Critical Point	=	555.99		
- PP-oning of P		ertical Clearance		47.35		
		ertical Clearance	=	15.0		
		ertical Clearance	=	14.5		
	. legenou r					

. Traņ	Systems	Checked	By _	PJP MTN CLEARANO	Date	08/30/06 08/30/06	Sheet No.	P403030064
Job Name	SC/-823-0.00	¥ LIXII						
	S.R. 823 OVER SL	OCUM AVEN	IUE			19415	····	
Alternative 1	- 5-72" Type 4 Modi	ified Concret	e I-Re	ams. Three S	nan		Point Location:	 · · · · · · · · · · · · · · · · · · ·
	or Cross Slope						<u> </u>	
		<u> </u>					<u></u>	
	<u>Comment</u>	<u>Grade</u>		<u>Offset</u>				
	Shoulder:	-0.04	x	4	=	-0.16		
					Ξ	0.00		
					_	0		
			Tota	al Adjustment	=	-0.16	•	
Superstructu	ure Depth							
	<u>un t u</u>			<u></u>	<u></u>			
	Comment	<u>Depth (in)</u>		Depth (ft)				
	Deck Thickness:	8.5		0.71				
	Haunch:	2		0.17				
Gir	der or Beam Depth:	72		6				
		82.5	-	6.88				
		Total Supe	rstruct	ture Depth (ft)	=	6.88		
Vertical Clea	arance at Critical Po	int						
·								
		Statio	on @ (Critical Point	=	122+84.19		
	c	Offset Location	on @ (Critical Point	=	3.5 Rt.		
	Profile	e Grade Eleva	ation at	t Critical Point	=	611.71		
	Adjustm	ent for Cross	Slope	s to Beam CL	= .	-0.16	_	
	Top of	Deck Elevation	on @ '	Critical Point	11	611.55		
		Total S	uperst	tructure Depth	= .	-6.88	_	
	Bottom of F	3eam Elevati	on @ /	Critical Point	=	604.67		
Aŗ	pproximate Top of E	xisting Grou	nd @ '	Critical Point	Ξ.	555.75	_	
		Actual	Vertic	al Clearance	=	48.92		
		Preferrec	d Verti	cal Clearance	=	15.0		
		Required	d Verti	cal Clearance	=	14.5		

. Tran Sy	vstems	Checked	By <u>PJP</u> By <u>MTN</u> CAL CLEARAN	Date	08/30/06 08/30/06	Sheet No.	P4030	
Job NameS	SCI-823-0.00	¥ 1.1 \ 1 \ \				0110		
Description		OCUM AVENU			19415	,		
	-68" Web Steel P	late Girders, 1	<u>'hree Span</u>			Point Location:	A	
Adjstment for C	cross Slope							
	omment	<u>Grade</u>	Offset					
Profile grade li	ine to critical pt.:	-0.016	x 34	.	-0.544			
			Total Adjustment	=	-0.54			
							N _11 1	
Superstructure	Depth						<u></u>	
<u>C</u>	omment	<u>Depth (in)</u>	<u>Depth (ft)</u>					
	Deck Thickness:	8.5	0.71					
	Haunch:	2	0.17					
Girder	or Beam Depth:	71	5.92					
		81.5	6.8					
		Total Supers	structure Depth (ft)	=	6.80			
Vertical Cleara	nce at Critical Po	int					<u></u>	
······································	· · ·							
1		Statio	n @ Critical Point	=	123+08.86			
		Offset Locatio	n @ Critical Point	=	41.5' LEFT			
	Profile	e Grade Elevat	ion at Critical Point	=	610.76			
	Adjustm	nent for Cross S	Slopes to Beam CL	= _	-0.54			
	Top of	Deck Elevatio	n @ Critical Point	=	610.22			
		Total Su	perstructure Depth	=	-6.80			
	Bottom of		n @ Critical Point		603.42	-		
Appr	oximate Top of E	Existing Groun	d @ Critical Point	=	555.99			
	·		/ertical Clearance	-	47.43	-		
			Vertical Clearance	=	15.0			
			Vertical Clearance	=	14.5			
		• • –						

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \bigcirc

Ο

 \bigcirc

0

0

 \bigcirc

 \bigcirc

0

 \bigcirc

0

 \bigcirc

Ο

Ο

Ο

 \bigcirc

Ο

Ο

Ο

0

Ο

Ο

Ο

Tra	n Systems >	Made Checked		PJP MTN	Date Date	08/30/06 08/30/06			P403030064
0				CLEARAN		· · · · · · · · ·			
Job Name _	SCI-823-0.00			(Struct	ure			
Description	S.R. 823 OVER SL	OCUM AVEN	IUE	I	PID #	19415	·-····		·
<u>Alternative</u>	2 - 5-68" Web Steel P	late Girders,	Three	<u>Span</u>			Point Location:	В	
Adjstment f	for Cross Slope								· · · · · · · · · · · · · · · · · · ·
	<u>Comment</u>	<u>Grade</u>		<u>Offset</u>					
	Shoulder:	-0.04	x	4	=	-0.16			
					=	0.00			
						0			
			Tota	I Adjustment	=	-0.16			
		<u></u>							
Superstruc	ture Depth			· · · · · ·					
	<u>Comment</u>	<u>Depth (in)</u>		<u>Depth (ft)</u>					
	Deck Thickness:	8.5		0.71			·		
	Haunch:	2		0.17					
G	irder or Beam Depth:	71		5.92					
		81.5		6.8					
		Total Supe	erstruct	ure Depth (ft)	=	6.80			
Vertical Cle	earance at Critical Po	int				<u></u>	<u></u>		- 111 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 1
· · · · · · · · ·				<u></u>			· ·		
		Stati	ion @ (Critical Point	=	122+84.19			
		Offset Locati	ion @ (Critical Point	=	3.5 Rt.			
	Profil	e Grade Eleva	ation at	Critical Point	=	611.71			
	Adjustn	ent for Cross	Slope	s to Beam CL	= _	-0.16	_		
	Top of	Deck Elevat	ion @ (Critical Point	=	611.55			
		Total S	Superst	ructure Depth	= _	-6.80	_		
	Bottom of	Beam Elevat	ion @ (Critical Point	=	604.75			
/	Approximate Top of E	Existing Grou	und @ (Critical Point	= _	555.75	_		
1		Actual	Vertic	al Clearance	=	49.00			
		Preferre	d Vertic	cal Clearance	=	15.0			
-		Require	d Vertid	cal Clearance	=	14.5			

Tran Systems >		By <u>PJP</u> By <u>MTN</u>		08/30/06 08/30/06	•	P403030064
	VERT	ICAL CLEARAN	CE C	ALCULATIC	DNS	
Name <u>SCI-823-0.00</u>	· · · •		Struc	ture		
scription <u>S.R. 823 OVER SI</u>	LOCUM AVEN	<i>IUE</i>	PID #	19415		
Iternative 3 - 5-54" AASHTO Ty	pe 4 Concret	te Beams, Single Sp	an		Point Location:	A
djstment for Cross Slope		· · · · · · · · · · · · · · · · · · ·				
Comment	<u>Grade</u>	<u>Offset</u>				
Profile grade line to critical pt.:	-0.016	x 34	_	-0.544		
		Total Adjustment	=	-0.54		
uperstructure Depth					·	
Comment	<u>Depth (in)</u>	Depth (ft)				
Deck Thickness:	8.5	0.71				
Haunch:	2	0.17				
Girder or Beam Depth:	54	4.5				
	64.5	5.38				
	Total Supe	erstructure Depth (ft)	=	5.38		
	Total Supe		=	5.38		
/ertical Clearance at Critical Po	-		=	5.38		
/ertical Clearance at Critical Po	oint	erstructure Depth (ft)				
	oint Stati	erstructure Depth (ft)	=	123+08.86		
	oint Stati Offset Locati	erstructure Depth (ft)	=			
Profil	oint Stati Offset Locati ie Grade Eleva	erstructure Depth (ft) on @ Critical Point on @ Critical Point ation at Critical Point	=	123+08.86 41.5' LEFT		
Profil Adjustr	oint Stati Offset Locati le Grade Eleva ment for Cross	erstructure Depth (ft) on @ Critical Point on @ Critical Point	2 2 2 2 2	123+08.86 41.5' LEFT 610.76		
Profil Adjustr	oint Stati Offset Locati ie Grade Eleva nent for Cross f Deck Elevat	erstructure Depth (ft) on @ Critical Point on @ Critical Point ation at Critical Point s Slopes to Beam CL		123+08.86 41.5' LEFT 610.76 -0.54		
Profil Adjustr Top of	Dint Stati Offset Locati le Grade Eleva nent for Cross F Deck Elevat	erstructure Depth (ft) on @ Critical Point on @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point		123+08.86 41.5' LEFT 610.76 -0.54 610.22		
Profil Adjustr Top of	oint Stati Offset Locati ie Grade Eleva ment for Cross f Deck Elevat Total S Beam Elevat	erstructure Depth (ft) on @ Critical Point on @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point		123+08.86 41.5' LEFT 610.76 -0.54 610.22 -5.38		
Profil Adjustr Top of Bottom of	Dint Stati Offset Locati ie Grade Eleva ment for Cross F Deck Elevat Total S Beam Elevat Existing Grou	erstructure Depth (ft) on @ Critical Point on @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point		123+08.86 41.5' LEFT 610.76 -0.54 610.22 -5.38 604.84		
Profil Adjustr Top of Bottom of	Dint Stati Offset Locati le Grade Eleva ment for Cross F Deck Elevati Total S Beam Elevat Existing Grou Actual	erstructure Depth (ft) on @ Critical Point fon @ Critical Point ation at Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point		123+08.86 41.5' LEFT 610.76 -0.54 610.22 -5.38 604.84 555.99		

•

Tra	n Systems >	Made Checked		PJP MTN		08/30/06	•		P403030064
*	Cyclonic			······		08/30/06	•		
VERTICAL CLEARANCE CALCULATIONS Job Name <u>SCI-823-0.00</u> Structure									
	S.R. 823 OVER SL	OCUM AVEN	IUE			19415			
Alternative	e 3 - 5-54" AASHTO Ty	ne 4 Concre		Point Location:	В				
	t for Cross Slope								
	• • • • • • • •		- <u></u>				<u></u>		
	Comment	Grade		Offset					
	Shoulder:	-0.04	x	4	=	-0.16			
					=	0.00			
						0			
			Tota	l Adjustment	= -	-0.16	•		
Superstru	cture Depth					<u> </u>	······		<u>, , , , , , , , , , , , , , , , , , , </u>
				*****				<u></u>	- <u></u>
	Comment	<u>Depth (in)</u>		Depth (ft)					
	Deck Thickness:	8.5		0.71					
	Haunch:	2		0.17					
	Girder or Beam Depth:	54		4.5					
		64.5		5.38					
Total Superstructure Depth (ft)					=	5.38			
Vertical C	learance at Critical Po	int							
	• •								
Station @ Critical Point					=	122+84.19			
Offset Location @ Critical Point					8	3.5 Rt.			
Profile Grade Elevation at Critical Point					= `	611.71			
Adjustment for Cross Slopes to Beam CL					=	-0.16	_		
Top of Deck Elevation @ Critical Point					=	611.55			
Total Superstructure Depth					Ξ.	-5.38	_		
Bottom of Beam Elevation @ Critical Point					=	606.17			
Approximate Top of Existing Ground @ Critical Point					= _	555.75	-		
Actual Vertical Clearance					=	50.42			
Preferred Vertical Clearance					=	15.0			
		Require	d Vertic	al Clearance	=	14.5			

APPENDIX D Preliminary Structure Site Plan

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

0

Ο

Ο

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

Ο

0

 \bigcirc

 \bigcirc

August 18, 2006

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Preliminary MSE Wall Evaluations - Revised Slocum Avenue (Highland Bend) SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03 Document # 0026

Dear Mr. Weeks:

This letter includes the revised findings of preliminary evaluations of mechanically stabilized earth (MSE) retaining walls on the above-referenced project. The previous evaluation of these structures was revised to incorporate changes suggested in comments received for other MSE walls in the Portsmouth Bypass project. All previous correspondence pertaining to these MSE walls should be disregarded. The findings included in this letter pertain to the MSE walls at the intersection of proposed SR 823 and Slocum Avenue. The findings of other preliminary MSE wall evaluations will be submitted in separate documents at a later date.

It should be noted that the results of these evaluations are based upon the findings of four preliminary structural borings and two roadway borings. Boring logs for borings TR-36, TR-37, TR-38, TR-38A, R-64, and R-64A are attached. Also, see attached boring plan. After the bridge design is finalized, it may be necessary to drill additional borings in the area of the proposed MSE walls in accordance with ODOT's Specifications for Subsurface Investigations in order to finalize the MSE wall evaluations.

An MSE retaining wall essentially consists of good quality backfill material with layers of metal or plastic reinforcing that are attached to concrete facing panels. The MSE wall and associated backfill should be constructed in accordance with the specifications of the manufacturer of the MSE wall.

At the time this letter was prepared, it was understood that the plan location of the bridge structure for proposed SR 823 over Slocum Avenue is similar to the location shown on the plan and profile drawings dated July 11, 2005. See attached plan and profile drawing. It is understood that the planned structure is being modified as follows: placing MSE walls at approximately stations 122+02 and 123+47 to contain the abutments and hold back the roadway embankment, thus shortening the bridge structure. Furthermore, it is understood from updated profile information that the height of the MSE wall at station 122+02 (Rear Abutment) will be

Michael D. Weeks, P.E., P.S. August 18, 2006 Page 2

A preliminary global stability analysis and preliminary bearing capacity analysis were performed for the MSE walls at this bridge location in accordance with ODOT and AASHTO guidelines. The MSE walls were also analyzed for sliding and overturning. At the time this letter was prepared, it was assumed that deep foundations would be used to support the structures at this location. However, the use of MSE walls at this site does not preclude the use of most common foundation types. Once a foundation type has been selected, DLZ should be informed so that the analyses may be revised as necessary.

Preliminary calculations for bearing capacity, sliding, and overturning, as well as the results of the global stability analyses are attached. Other external and internal stability analyses are required for the design of an MSE wall, but are considered outside the scope of this report. The parameters required to perform the stability analyses are presented below.

In accordance with ODOT guidelines, a unit weight of 120 pcf and a friction angle of 34 degrees were selected for the backfill material in the reinforced zone. Similarly, the fill material used to construct the roadway embankments is assumed to have a unit weight of 120 pcf and a friction angle of 30 degrees. If the embankment fill material or backfill material for the reinforcing zone has properties significantly different from these values, DLZ should be informed so that the analyses may be revised as necessary.

Preliminary calculations for bearing capacity, sliding, overturning, and settlement were performed for the MSE wall at the rear abutment location. The MSE wall at the rear abutment is slightly higher than the MSE wall at the forward abutment, and thus the more critical location. Due to similarities in soil profiles and strengths, the analyses at the rear abutment are considered representative of both wall locations.

MSE Wall Evaluation at Station 122+02 (Rear Abutment) and Station 123+47 (Forward Abutment)

In the area of this proposed MSE wall, boring TR-37 encountered three inches of topsoil at the surface. Below the topsoil layer, primarily very stiff to hard clay (A-7-6) and silty clay (A-6b) was encountered to a depth of 10.5 feet below ground surface. Below 10.5 feet, primarily very stiff silt (A-4b) was encountered to a depth of approximately 32.0 feet below ground surface. Below 32.0 feet, primarily hard silty clay (A-6b) and clay (A-7-6) was encountered to a depth of approximately 62.0 feet below ground surface. Below 62.0 feet, primarily medium dense silt (A-4b) was encountered to a depth of approximately 72.0 feet below ground surface. Below 72.0 feet, primarily loose gravel with sand and silt (A-2-4) was encountered to a depth of approximately 79.0 feet below ground surface, at the top of bedrock. Underlying the soil, this boring encountered medium hard to hard, moderately weathered sandstone to the bottom of the boring, at a depth of 99.0 feet.

Michael D. Weeks, P.E., P.S. August 18, 2006 Page 3

It is understood that the MSE wall at the rear abutment will be approximately 59.7 feet high, as measured from the existing ground surface to the proposed profile grade. Similarly, it is understood that the MSE wall at the forward abutment is 56.5 feet high. A minimum required embedment depth of 3.0 feet was assumed for the analyses.

Preliminary analyses yielded factors of safety for drained global stability, drained bearing capacity, drained sliding, and overturning that were adequate. However, undrained global stability, undrained sliding, and undrained bearing capacity factors of safety were below recommended minimum values. An undercutting option was considered but did not yield satisfactory results. Results of these analyses indicate that if MSE walls are to be used at this location, a drained condition must be maintained throughout the construction process.

Based upon the traditional Terzaghi bearing capacity equations, the allowable undrained bearing capacity is equal to approximately 30 feet of fill. Next, UTEXAS3 was utilized to evaluate the bearing capacity of the MSE wall. UTEXAS3 is a computer program that can be used to evaluate several types of global stability failure modes. If the problem is modeled so the failure surface passes through the TOE of the MSE wall volume, this analysis can be said to be analyzing a global stability failure mode that is essentially a bearing capacity failure. Using this type of model for the MSE walls at SR 823 over Slocum Avenue, the factor of safety for undrained bearing capacity of the full height wall was calculated to be 1.2. Additionally, an analysis was performed to determine the maximum allowable staged construction height to achieve a minimum factor of safety for undrained bearing capacity of 2.5. This analysis resulted in a maximum allowable staged height of 30 feet. This value is in good agreement with the value determined from the undrained bearing capacity calculation. Consequently, it is recommended that the MSE walls be built in 30-foot stages. The required waiting period between stages will be determined by the selection of wick drain spacing. Several wick drain spacing options are presented for the roadway embankments in our report; Proposed Highland Bend Embankments dated June 8, 2006. The ninety percent consolidation periods for the various spacing options range from 30 to 95 days. The waiting period will allow excess pore water pressures to dissipate enough to accommodate the additional loading of the embankment fill while maintaining a factor of safety of 2.5.

For stability, preliminary calculations indicate that a minimum reinforcement length of 0.9 times the total height plus the embedment depth is required. This corresponds to 56.4 and 53.6 feet for the rear and forward abutments, respectively.

The total maximum settlement of the MSE wall volumes at this location was estimated to be approximately 21 inches at the centerline of the wall. Settlement was calculated using the computer program EMBANK, using the "end of fill" option to model the non-

Michael D. Weeks, P.E., P.S. August 18, 2006 Page 4

> continuous embankment loading. Differential settlement at this location was estimated to be approximately 0.8%. MSE retaining walls are able to withstand relatively large amounts of differential settlement, typically up to 100 millimeters per 10 meters of wall length (1/100). The estimated amount of differential settlement at this site is less than the typical recommended maximum value of 1/100.

> In lieu of MSE walls, spill through slopes have been evaluated to construct the embankments at the abutment locations. Global stability analyses indicate that 2H:1V or flatter slopes may be used to construct the spill through slopes near the rear and forward abutments. It should be noted that due to higher fills or more critical soil profiles, the roadway embankments in this area require the use of 2.5H:1V or flatter slopes. (Embankment analyses are contained in the report, Proposed Highland Bend Embankments, dated June 8, 2006) The use of 2H:1V slopes pertains to the spill through slopes for the Slocum and Pershing Avenue structure location only.

Calculations for bearing capacity, overturning, sliding, and settlement are attached. A drawing showing the results of the global stability analyses is also attached.

A summary of soil properties, summary of the results of calculations, and results of global stability analyses are attached.

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted. DLZ OHIO, INC.

en J. Riedy echnical Engineer Dorathy A. Adams

Steven J. Riedv Geotechnical Engineer

Dorothy A. Adams, M.S.C.E., P.E. Senior Geotechnical Engineer

Encl: As noted

cc: file

M:\proj\0121\3070.03\Stability Analyses\Documents\MSE Wall letters\08 Slocum Ave (Highland Bend)\Preliminary - Revised\MSE Wall Findings - Slocum Avenue 08-18-06 SJR.doc

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Geot\Forms\General Info English.doc

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot
<u>Term</u>	Standard Penetration
Very Loose	0-4
Loose	4 10
Medium Dense	10 – 30
Dense	30 – 50
Very Dense	over 50

Cohesive Soils - Consistency

<u>Term</u> Very Soft Soft Medium Stiff Stiff Very Stiff	Unconfined Compression tons/sq.ft. less than 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0	Blows/Foot Standard <u>Penetration</u> below 2 2-4 4-8 8-15 15-30	<u>Hand Manipulation</u> Easily penetrated by fist Easily penetrated by thumb Penetrated by thumb with moderate pressure Readily indented by thumb but not penetrated Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

b. Color – If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

c. Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows:

Description	<u>Size</u>	Description	Size
Boulders	Larger than 8"	Sand – Coarse	2.0 mm to 0.42 mm
Cobbles	8" to 3"	– Fine	0.42 mm to 0.074 mm
Gravel Coarse	3" to ¾"	Silt	0.074 mm to 0.005 mm
- Fine	¾" to 2.0 mm	Clay	smaller than 0.005 mm

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English.doc

d. The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

e. Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes.

trace 0 to 10% little 10 to 20% 20 to 35% some "and" 35 to 50% f Moisture content of cohesionless soils (sands and gravels) is described as follows: <u>Term</u> Relative Moisture or Appearance Dry No moisture present Damp Internal moisture, but none to little surface moisture Moist Free water on surface Wet Voids filled with free water The moisture content of cohesive soils (silts and clays) is expressed relative to plastic properties. α. <u>Term</u> Relative Moisture or Appearance Dry Powderv Moisture content slightly below plastic limit Damp Moist Moisture content above plastic limit but below liquid limit Wet Moisture content above liquid limit 10. Rock Hardness and Rock Quality Designation a. The following terms are used to describe the relative hardness of the bedrock. <u>Term</u> Description Very Soft Permits denting by moderate pressure of the fingers. Resembles hard soil but has rock structure. (Crushes under pressure of fingers and/or thumb) Soft Resists denting by fingers, but can be abraded and pierced to shallow depth by a pencil point. (Crushes under pressure of pressed hammer) Medium Hard Resists pencil point, but can be scratched with a knife blade. (Breaks easily under single hammer blow, but with crumbly edges.) Hard Can be deformed or broken by light to moderate hammer blows. (Breaks under one or two strong hammer blow, but with resistant sharp edges.) Very Hard Can be broken only by heavy and in some rocks repeated hammer blows. Rock Quality Designation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is b. obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core run.

11. Gradation -- when tests are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).

12. When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated graphically.

13. The standard penetration (N) value in blows per foot is indicated graphically.

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English.doc

 \bigcirc

		ر. ۱۱		ł		Project: SCI-823-0.00		Job No. 0121-3070.03
щ	LOG OF: Boring R-64	R-62			Location: ap	arking Date Drilled:	05/16/05 to 05/17/05	
			- Se	Sampla No.	:	WATER OBSERVATIONS:	GRADATION	
20		(uļ) Ki		භංට	Penetro- meter		рі рі рі	STANDARD PENETRATION (N)
(ft) 551.6	a swola	вчорея	Drive	/ ssarq	(tsf)	DESCRIPTION	Mgggg % C. San % C. San % Clay % Clay	
-						VIopsoil - 3"	6 6 6	10 <u></u> 20 30 40
	+ + +	3	•••		4.5	Very stift to hard brown SILT AND CLAY (A-6a), little fine to coarse sand; damp.		C
	2 4 7	5	N		4.25			(
	4 5 7	4			3.0)
				£		TARAFT		0
	3 4 6	18			3.75			(
	4 6 4	17	ی 		3.0	@ 13.5', Very stiff, trace fine to coarse sand, moist to wet.)=
	2 4 4	18	ۍ 		2.5	· · ·	,	
				P2			0 5 - 2 51 42	
	3 4 4	18	~ 		3.0	@ 21.0', Little fine to coarse sand, moist to wet.		(
-528.1-	3 4 5	-18			1.75	Stiff brown and gray SILT (A-4b), little fine sand, little clay; moist.		
	2 2 4	18			1.75			
	3 6 10	18	ç		4.5+			

0

LOG OF: Boring R-64	oring 1	Å.		Location:	Location: approx. 20' SE of marking Date United:	05/16/0		2	05/17/05	05	TT
	¢	(uj)	Sample No.		WATER OBSERVATIONS: Water seepage at: 63.5' tro- Water level at completion: 65.5' (prior to coring)		GRADATION	NO		STANDARD PENETRATION M	
Depth Elev. (ft) (ft) (ft)	Blows per (Recovery	Đứve	Press /Con		bregargeA å breß C. Sand	bne2 .M à bne2 .H à	#!S %	Clay	Natural Moisture Content, % - PL H H H L H L L Blows per foot - O	•
7-521.6-					Very stiff to hard gray CLAY (A-7-6); damp.		6		 		
·····	5 12 12	16	÷	4.5+							• • • • • • • • • • • • • • • • • • • •
·····	3 7 11	18	12	4. 5.	DRM	0		53	4		·····
·····	4 12 12	<u>1</u> 6	13	45.4				·····			
	3 4	18	4	4 ů							
	5 7 10	18	15	3.5							
-494.6-	3 7 7	8	16	4.25	Hard gray SILTY CLAY (A-6b), some fine to coarse sand, trace gravel; damp.	ace					

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 0 0 0 00000000 0 0 0 00000 0 0 0 0 Ο \bigcirc \bigcirc

(÷S • STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -Ц Ο Blows per foot 05/17/05 2 ď % Clay #!S % 9 GRADATION bns2 ,7 % pubs .M % Date Drilled: 05/16/05 bnes .0 % DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 ajebaubby % grained, slightly weathered, argillaceous, thickly bedded, highly fractured, clay seam from 79.4' to 79.5'. Loose to medium dense gray COARSE AND FINE SAND (A-Medium hard to hard gray to dark gray SANDSTONE; fine WATER OBSERVATIONS: Water seepage at: 63.5' Water level at completion: 65.5' (prior to coring) 2.0' (includes drilling water) Severely weathered gray SANDSTONE, argillaceous. Bottom of Boring - 80.9' DRAFT DESCRIPTION Project: SCI-823-0.00 3a), some silt, little gravel; wet. Location: approx. 20' SE of marking Hand Penetro-meter (tst) ଶାରଠି / ୧୧୫୩<mark>୦</mark> RQD 83% R-1 Sample Ś өviiQ 17 18 5 Client: TranSystems, Inc. LOG OF: Boring R-64 Rec 65" (uj) Ливлорец 4 <u>8</u> n α HOV Core 65" "ð neg swol8 ø 491.6 491.6-Ξlev. -478.1 476.1 470.7 Depth (ft) 6<u>0</u>.0--73.5-ပ္ပ်င္ပ ş 55.5 ജ ŝ 80.5 ទួ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 0 0 0 0 0 0 0 0 0 0 0 \bigcirc 0 Ο 0 0 Ο 0 0 Ο \bigcirc \bigcirc \bigcirc

STANDARD PENETRATION (N) 0121-3070.03 Ч Natural Moisture Content, % Ο Blows per foot Job No. ď KEIJ % 5 50 88 ស 29 18 31 47 2 82 43 49 ₩S % 47 20 53 52 67 <u>م</u> 4 GRADATION pues : H % 5 2 1 ---2 -÷ 2 -bns2 .M % 1 1 1 Ł Ł ł ł 1 ł ł pues 'O % -1/11/06 - -0 0 DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 o 0 0 -o ə]ebəl6b∀ % 0 00 0 ð 0 0 0 0 0 Very stiff brown SILTY CLAY (A-6b), trace fine to coarse sand; Medium stiff brownish gray CLAY (A-7-6), "and" silt, trace fine Date Drilled: Stiff to very stiff brown CLAY (A-7-6), "and" silt, trace fine to coarse sand; damp to moist. Soft to medium stiff brown SILT (A-4b), some to "and" clay, trace fine sand; moist. Very stiff brown SILT AND CLAY (A-6a), trace fine sand; Water level at completion: 64.8' (prior to coring) 13.9' (includes drilling water) Water seepage at: 68.5' - 70.0' DRAFT DESCRIPTION @ 3.0'-7.5', Hard, trace organic soil. SCI-823-0.00 to coarse sand; damp. Project: @ 21.0', little clay. @ 25.0', Very stiff. @ 28.5', little silt. WATER OBSERVATIONS: 4 Location: Highland Bend Topsoil damp. damp. Hand Penetro-meter 0.5/2.0 2.0/0 2.25 4.5+ (tst) 0.25 0.75 2.5 2.5 2.5 0.5 2.5 2.5 P1P ao)/ ssal P28 P28 Sample No. эŵД 2 9 ო 4 ŝ ø ► ω თ LOG OF: Boring R-64A Client: TranSystems, Inc. (ui) (лалозеу 0 18 8 ₽ 29 9 8 18 ₽ 18 9 ų ¢ ¢ c 11 c 9 led swold N ŝ с) ഗ w ŝ ŝ ശ ŝ 547.01 -546.1-552.0 551.7-Elev. (ft) 536.2-529.0-Depth (ff) 5 1 -15.9 ե տ ъ Ч 5 ŝ 32 EITE: 0151-3010-03 [8/16/5000 3:53 EW]

 \bigcirc

LUG UF: BOLING K-64A	soring	7-64		ğ	sation: Hi	Date Drilled: 1/11/06		
			Sample No.		:	WATER OBSERVATIONS:	GRADATION	
		(U <u>i</u>) Au		සංර	Hand Penetro- meter	Water seepage at: 68.5 - 70.0' Water level at completion: 64.8' (prior to coring) 13.9' (includes drilling water)	pı pu	STANDARD PENETRATION (N) Natural Moisture Content. % -
(ft) (ft) 30 522.0	l smola	элорөЯ	Этіve	/ ୧୧୬୩୦	(tsf)	DESCRIPTION	% W. Sai % F. Sai % M. W. Sai	
							6 6 6 6	20 74
33 33	5 7 11	8	7		4.5+			
-37.0	<u>_</u>					Hard gray SILTY CLAY (A-6b), some silt, trace silt; damp to		
	6 11 11	18	4		4.5+		- 1 26 73	
ر ۱۱۱۱	6 12	æ		P4	4.0 4.5+		} ·	
	5 7 10	18	4		4.0	@ 47.0', Trace organic clay.		
	4 7 9	8	15		2.5			
57.0	I I I			<u> </u>	C T	Medium stiff to stiff gray SILT (A-4b), some clay, little fine to coarse sand; damp to moist.		

Client: TranSystems, Inc.	System	s, Inc.				Project: SCI-823-0.00	Job No. 0121-3070.03
Ч	LOG OF: Boring	R-64A		2	cation: Hi	Location: Highland Bend Date Drilled: 1/11/06	Ģ
•			Sample No.	ole .			GRADATION
	·····	(u]) Ale			Hand Penetro- meter	Water seepage at: 68.5' - 70.0' er level at completion: 64.8' (prior to coring) 13.9' (includes drilling water)	put put
(ft) (ft) 60 492.0	o swol8	Кесоле	өŵД	/ ୧୧୭୩୯	(tsf)	DESCRIPTION	% (נפא #IS % #S 'L' & % W % % C' &
5 - 5 - 1 - 1 - 1	3 4 4		4		1.0	@ 62.5', Little to some fine to coarse sand, trace to little gravel, trace to little clay, moist to wet.)
67.0		8	18				6 1 53 24 0 Non-Plastic
-72.0480.0-	0- 50/5	4	19			Severely weathered gray SANDSTONE argillaceous, micaceous.	
-75.0-+477.0	60" Core	Rec 60"	RQD 100% R-1	<u></u>		Medium hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, micaceous, thickly bedded, slightly fractured. @ 78.8' to 79.3', very fine grained interbed, soft.	
80.0						Bottom of Boring - 80.0'	
85							
T T							

\bigcirc 0 0

Client: TranSystems, Inc.	nSyste	<u>ems, inc</u>	Ċ				Project: SCI-823-0.00			Job No. 0121-3070.03	0.03
LOG OF: Boring	Borir	1g TR-36			Local	tion: Fol	Location: Forward Abutment SCI-823.00 over Slocum Ave Date Drilled: 01/31/05	(05 to	02/		
				Sample No.			WATER OBSERVATIONS:	GRADATION			
			(u <u>i</u>) fu		·····	Hand Penetro- meter	water seepage at: 62'-13' Water level at completion: 12.0' (Prior to coring) 12.0' (includes drilling water)	pu pu		STANDARD PENETRATION (N) Natural Moisture Content % -	(N) NC
	(ff) 552.6	evooa Recove		9vinQ	/ ୧୧୭୩୦	(tsf)	DESCRIPTION	#15 % % E [.] S ⁹ # % C. S ⁹	% Clay	$\frac{PL}{Blows per foot} - \bigcirc$	40
	N	3 4 17	~	~		2.0	Very stiff brown and gray CLAY (A-7-6), trace fine sand; moist. @ 0.0'-1.8', contains root fragments.				
55 55 55 54	547 1	7 8 16	6	N		3.0	0	0 - 1 31	ĝ	<u>•</u>	
	m	3 4 18	ø	ю		3.0	Very stiff brown CLAY (A-7-6), trace fine sand; varved; moist.			0	· · · · · · · · · · · · · · · · · · ·
10	N	3 3 5 16	6	4		3.0	°	0 - 1 38	5	0	T
<u>k</u> i 1	m	4 6 18		2 L		2.5	ORPTI			0	
15	N	4 5 18	- 	9		3.25					
	m	4 5 18		~		3.0		······································		C	
20	4	5 6 18		80		3.0					
	m	4 5 18		ŋ		3.25	Very stiff brown SILT AND CLAY (A-6a); varved; moist. 0	0 1 65	34	0	
55	ຕັ	4 4 - 18		10		3.0				O	
-26.052	526.6 2	4 4 18		5		3.5	Very stiff brown SILT (A-4b); varved; moist.	0 - 2 67			·····
-28.5	524.1 2	2	~	12		2.75	Very stiff gray CLAY (A-7-6); varved; wet.				

\bigcirc	
\bigcirc	
Q	
\bigcirc	
\bigcirc	
Ο	
\bigcirc	
0	
\bigcirc	
\bigcirc	
0	
\bigcirc	
О	
Ο	
Ο	
0	
0	
Ο	
Ο	
Ο	
0	
Ο	
Ο	
Ο	
0	
Ο	
0	

-

* (614)888-0040	
OHIO 43229	
3. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	
* 6121 HUNTLE	
DLZ OHIO INC.	

Client: TranSystems, Inc.	ranSys	stems,	luc.				Project: SCI-823-0.00			Job No. 0121-3070.03
Ö Ö	BO	LOG OF: Boring TR-36	R-36	_	2	cation: Fo	Location: Forward Abutment SCI-823.00 over Slocum Ave Date Drilled:	01/31/05 to		02/01/05
				Sample No.			WATER OBSERVATIONS:	GRADATION	Ţ	
	Elev.	"g Jeo	(uj) Au		r	Hand Penetro- meter	Water seepage at: 62-73' Water level at completion: 12.0' (Prior to coring) 12.0' (includes drilling water)	ри ри		STANDARD PENETRATION (N) Natural Moisture Content. % -
E S	<i>(tt</i>) 522.6	i swol£	өлорея	ЭŵД	/ ୧୧୬୩୯	(tst)	DESCRIPTION	% 49999 % C. Sai % F. Sai 162 .M %	% (CIII) % Siif	
3 <u> </u>							Very stiff gray CLAY (A-7-6); varved; damp to moist.	6 6		
35	- I.	2 8 10	7	ę		3.75	1JA OC			
6 4	<u></u>	7 8 10	13	4		3.75	@ 38.0', brownish gray.	0 0 33	3 67	
42 45		4 9 12	18	to to		4.5+	@ 42.0' to 47.0', hard.			(
S S						2.75	@ 47.0', gray, damp to moist.	······) <u> </u>
22 22	^w / 1	0 0 10	98	17		3.0	-			
	495.6	2		ă		i i	Hard gray SILT (A-4b); damp.			
60			18	2	-	t		0 1 - 9 53	3 37 : :	

 \bigcirc •

 \sim

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

Client: TranSystems, Inc.	ransy	'stems	, Inc.		i		Project: SCI-823-0.00				Joh No. 0121-3	0121-3070 03
LOG OF: Boring	F: Bo		TR-36		γοί	Location: FO	Forward Abutment SCI-823.00 over Slocum Ave Date Drilled:	id: 01/31/05	2			
				Sample	-Pa		WATER DRSEPVATIONS:	5	GRADATION			
Depth	Elev.	0er 6"	(uį) Au		1	Hand Penetro- meter	Water seepage at: 62'-73' Water level at completion: 12.0' (Includes drilling water)		pu		STANDARD PENETRATION (IV) Natural Moisture Content. % -	ATION (N)
(it) En	(ff) 492.6	l swola	элозед	өv'nQ	/ ୧୧୭୩୩	(tsf)	DESCRIPTION	91664 % 92.0 %	182 'N %	% Clay % Si¥	PL + Blows per foot -	10 1
3							Hard gray SILT (A-4b); damp.		;		2	
+ 650 650	-490.6-						Very loose gray SANDY SILT (A-4a); wet.					
		2	б	0 0			DRAFT					
2 2		0 4 7	18	50			@ 69.0', medium dense.	0	60 31	8	Circles Circle	
	480.6	EDM		5		_	Severely weathered gray SANDSTONE argillaceous.					
74.0	-478.6	i me	-	5			Hard light gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, massively bedded, slightly fractured. @ 76.0', 76.3', low angle fractures.	htty				
8		Care 120"	Rec 116"	RQD 70% R-1			@ 77.6',77.7', low angle fracture.					
1 1 1	u I				<u> </u>		@ 83.4' to 84.9', medium hard, very fine grained.					
85									· · · · · · · · · · · · · · · · · · ·			
-T		Core 120"	Rec 119"	RQD 93%	R-2							

.

 \bigcirc \bigcirc 0. \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 0 0 0 0 0 0 0

(614)888-0040	
•	I
OHIO 43229	
COLUMBUS,	
DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	
Ĩ	
OHIO INC.	
DLZ	

	to 02/01/05	W STANDARD PENETRATION (N) STANDARD PENETRATION (N) Natural Moisture Content, % - ● State Flow State Flow Model M	
	05 to	D pues : 1 %	
		pues W %	
	01/31/05	© pueS .O %	
	13	ofendably %	
naject: SCI-823-0.00	SCI-823.00 over Slocum Ave Date Drilled:	WATER OBSERVATIONS: Water seepage at: 62'-73' Water level at completion: 12.0' (Prior to coring) 12.0' (includes drilling water) DESCRIPTION	Hard light gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, massively bedded, slightly fractured. @ 90.2' to 97.1', calcareous layer. Dettom of Boring - 94.0' Bottom of Tri, calcareous Bottom of Boring - 94.0'
	Location: FC	Hand Penetro- meter (tsf)	
	ĕ		
ſ	1	Prince Sample	
36		0.00 N	
Client: Iransystems, Inc.	1K-36	χθεονειλ (in)	
stem	Boring	"ð nag swolð	
ž	ñ	Elev. (ft) 462.6	4 4 20 0 0 0
	5		
Clent:		Depth (ft)	

0

Client: TranSystems, Inc.	tems, It	2 2				Project: SCI-823-0.00					Job No. 0121-3070.03	.03
Ъ В	LOG OF: Boring TR-37	5		Ĭ	ocation: Pie	Location: Pier 1 SCI-823.00 over Slocum Ave Date Dulled:	: 01/27/05		요	01/31/05	/05	
			Sample No.	ejd	:	WATER OBSERVATIONS:	1 CF	GRADATION	NOL			
Elev.	bet e _u	(u <u>i</u>) Kiai		භ0ට/	Hand Penetro- meter	water seepage at: 16.0-18.0', 37-37.5', 68' Water level at completion: Not Recorded			DUE		STANDARD PENETRATION (N) Natural Moisture Content, % -	(N) N
(11) 556.1		юзеу	өv'nQ	ଽଽଈୄୢ୷	(tst)	DESCRIPTION	1664 %	S W %	#!S % S'H %	<u>راهای</u>	PL F Blows per foot - O	40 41
<u>ا ۱۷</u>		14	~		2.25	Very stiff brown CLAY (A-7-6); trace fine to coarse sand; moist.	0	ŧ.		22 (T
<u></u>	4 2	18	2		2.0	@ 3.0', brown and gray.)		
- <u> </u>	4 2	18	<i>с</i> о		1.5	Hard brown SILT CLAY (A-6b), trace fine to coarse sand; damp.	0		6 38	55	• •	
<u>[</u>] []	89	17	4		4.5+	@ 8.0', hard; damp.					~	
	4 	10	S		2.25	Very stiff brown SILT (A-4b), "and" clay, trace fine sand; varved; damp to moist.	·). 	
~	ب م	18	ø		3.0	DRAFI	0		1 61	 چ		
0	4	3	7		0.5	@ 16.0'-18.0', soft; wet.				(
r N	4	18	ø		2.0			• • · · · · · · · · · · · · · · · · · ·				
2	2 7	18	5	//	2.25							
	4		10		2.0							
	2	18	7			Medium dense brown SILT (A-4b), some clay, trace fine sand; moist.	0 0 ;p		0 79	7	• [
m	4 D	18	12				0 0		2 77	21		

 \bigcirc \bigcirc \bigcirc 0 0 0

Transystems, Inc. Transystems, Inc. Transystems, Inc. OF: Boring TR.37 Location: Pier 1 SCI-823.00 or 1 Elev. e^{6} (in) Elev. e^{6} (in) Recovery Watter Prendro- meter S24.1- Modium dense 524.1- Medium dense 6 13 524.1- Medium dense 6 13 524.1- Medium dense 6 13 6 13 7.1 18 514.1- 16 6 13 6 14 7.1 16 7.1 18 7.1 18 8 17 8 12 8 13 8 15 4.5+	-823-0.00 Job No. 0121-3070.03	Date Drilled: 01/27/05 to 01/31/0	GRADATION	p p p	DESCRIPTION A C M M M M M M M M M M M M M M M M M M		gray SILTY CLAY (A-6b), trace fine sand; moist.		I TAK	0 1 1 1 1 1 1 1 1 1 1 1 1	damp to moist.				0 0 - 0 21 79
TranSystems, Inc. OF: Boring TR-37 OF: Boring TR-37 OF: Boring TR-37 Location: $OF: Boring TR-37$ Location: $OF: Porotion No. OF: Porotion Porotion OF: Porotion $		er 1 SCI-823.00 over 5	WATER OBSERVATIONS:	1		Medium dense brov					Hard gray CLAY (A				
Transystems, Inc. OF: Boring TR.37 OF: Boring TR.37 OF: Boring TR.37 Samp 526.1 Blows per 6 ⁶ 6 6 6 6 13 7 13 8 13 8 13 13 14 6 13 14 13 13 13 14 15 14 13 14 13 14 13 14 13 14 15 15 16 17 18 12 13 14 15 16 17 18 17 18 17 18 17 18 13 14 15 16 17 18 17 18		Location:	:					4.5+		4.25		4.25	4.5+	4.0	4.5+
Transystems, Inc. OF: Boring TR-37 OF: Boring TR-37 (fi) (fi) 526.1 Blows per 6" 524.1 6 9 18 524.1 6 9 18 524.1 13 18 7 18 524.1 18 6 9 18 8 13 18 8 18 8 8 13 18 8 18 8 8 13 18 8 18 8 8 13 18 18 8 18 8 13 18 18 8 18 8 13 18 18 18 8 12 18 18 18 8 12 18 18 18 8 12 18 18 18 12 18 18 18 12 18			ample No.	<u>ຍ</u> າດ(<u></u>		4		<u>م</u>	o	~	8
TranSystems TranSystems GF: Boring 54,1 1 54,1 1 314,1 6 314,1 6 314,1 4 12 1 12 1		37	S			· · .									
Client: TranSystem Client: TranSystem LOG OF: Boring 33 40 	s, Inc											1 1			
Client: Trans Client: Trans (ft)	ystem	oring				.	-1	ဖ		 <i>∞</i> 	<u> </u>	4 7 1	8 6,1	~	8 12 12
Client:	TranS		••••••	ī	Elev. (ff) 526.1		524.1				-514.1-				
	Client:				(iii) (iii) (iii)	ß	-32.0-	32 [–] –	F 11	40	+	42 42	l l l l l	8 	e G

\bigcirc \bigcirc \bigcirc \bigcirc 0 0 0

Client:		/stems,	ho.				Project: SCI-823-0.00			Job No. 01	Job No. 0121-3070.03	
		Boring			Š,	Location: Pie	Pier 1 SCI-823.00 over Slocum Ave Date Drilled: 01/27/05	7/05 to	01/3	01/31/05		
	·			Sample No.	ê		WATER OBSERVATIONS: W.	GRADATION	┝┯			
		.e,	(u <u>i</u>) ,			Hand Penetro- meter	water seepage at: 16.0-18.0', 37-37.5', 68' sr level at completion: Not Recorded	ļ		STANDARD PENETRATION (N)	VETRATION (N)	
Depth (ff)	Ξlev.	ied si	<i>К</i> лөлс		0/s	(tsf)	eɓauɓ	bne2 bne2		Natural Moisture Content, % PL PL	Content, % -	•
 2 2	496.1	wola	ාාවෙ	θŵΩ	ടപപ	(mar)	DESCRIPTION	WS % %E W %	PIO %	Blows per foot	· () ') ;;	
8							Hard gray CLAY (A-7-6); damp to moist.	5 5 5	: :			
		·					Medium dense light gray SILT (A-4b), some fine to coarse			·····		
		7 10 10	18	19						<u></u> C		
τ I			.,				DRAFT			<u> </u>		
1							@ 68.0', loose, wet.					
- <u> </u>		3	8	50				2 - 30 57 1	01 01			
-72.0-	484.1-						Loose drav GRAVEL WITH SAND AND SILT (A-2-4) trace					
ı F												
- 52		4	38	2			12	3 - 53 21	<u>5</u> <u>2</u>			
f							Severely weathered gray SANDSTONE argillaceous.			/	/	
) 	477.1-	50/2		8			\@ 79.0' to 80.2', broken.				/	7
ا 20 00 عن							Medium hard to hard gray SANDSTONE; very fine to fine grained moderately weathered amillaneous thinky harded to					
1 102/91							the second signification of the second secon					
і :/в 1		Core	Dar Dar	C			@ /9.3 to /9.4' and /9.8' to 80.1', iron stained bands. @ 80.8', low angle fracture.					
20-040		1201	117	74% R-1	<u>-</u>			· · · · · · · · · · · · · · · · · · ·				
1 1 5-131-3							@ 86.0', low angle fracture.					
LIPE							@ 87.5' to 89.2', contains moderate argillaceous laminations. @ 88.3' to 88.6', decomposed arcillaceous band					
05												

 \bigcirc \bigcirc 0000000 0 0 0 \bigcirc Ο \bigcirc 0 0 0 Ο Ο 0 \bigcirc \bigcirc

Job No. 0121-3070.03			PL H Blows per foot - O				
			% Clay				
	2	GRADATION	% E' Sand				
		ADA	pues .M %				
040	7/05	Ö	bnes .0 %				
888-	31/2	! "	916991994 %				
DLZ UHIO INC. * 5121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Project: SCI-823-0.00	Pier 1 SCI-823.00 over Slocum Ave Date Drilled: 01/27/05	: 16.0'-18.0', 37'-37.5', 6 : Not Recorded	DESCRIPTION	@ 91.9' to 92.0', calcareous.	@ 94.4' to 94.7', calcareous.	@ 96.9' to 97.4', calcareous layer.	Bottom of Boring - 99.0'
	Location: Pi	Hand Penetro-	məter (tsf)				
	۲ ۲		ମଦଠ / ୧୧୫୩୩		R-2		
		Sample No.	өvinQ		800 99% R		
<u>1</u> 2	TR-37		Кесолегу		Rec 119" 9		
tems,	ing T		Blows per 6		Core 1 120"		
TranSystems, Inc.	OF: Boring		Elev. (ft) 466.1				457.1
	10 901		Depth (ft)	 }		<u> </u>	

LOG OF: Borring TR-38 Location: Rear Abutment SCI-823.00 Pepth Elev. 6 (in) Water (in) (in) Mand 0BSERVATIONS: Water (in) (in) Marter No. Hand 0BSERVATIONS: (in) (in) (in) Marter Water level at mater Water level at mater (in) (in) (in) No. 1 2.5 Very stiff CLAY (A-7-6 5 9 1 2 3.5 3.5 3.5 No. 5 4 8 18 2 3.5 3.5 No. No. No. 10.0 5 4 8 1 2 3.5 No. No. No. 15 6 1 1 2.5 Very stiff CLAY (A-7-6 No. 5 6 1 3 3.5 No. No. No. 15 5 1 1 2 3.5 <th>Abutment SCI-823.00 over Slocum Ave Date Drilled: 02/09/05 ATER Date Drilled: 02/09/05 BSERVATIONS: Water seepage at: 10.0°-21.5' 33.0°-38.5', 65.0°-80.0' Gi BSERVATIONS: Water seepage at: 10.0°-21.5' 33.0°-38.5', 65.0°-80.0' Mater Water level at completion: 9.8' (Prior to coring) 7.3' *Including drilling water) T.3' *Including drilling water) 7.3' *Including drilling water) % Aggregate DESCRIPTION 7.3' *Including drilling water) % Aggregate Very stiff CLAY (A-7-6), brown , trace fine sand; damp. 0 0</th> <th>ADV bre</th> <th>02/10/05</th> <th></th>	Abutment SCI-823.00 over Slocum Ave Date Drilled: 02/09/05 ATER Date Drilled: 02/09/05 BSERVATIONS: Water seepage at: 10.0°-21.5' 33.0°-38.5', 65.0°-80.0' Gi BSERVATIONS: Water seepage at: 10.0°-21.5' 33.0°-38.5', 65.0°-80.0' Mater Water level at completion: 9.8' (Prior to coring) 7.3' *Including drilling water) T.3' *Including drilling water) 7.3' *Including drilling water) % Aggregate DESCRIPTION 7.3' *Including drilling water) % Aggregate Very stiff CLAY (A-7-6), brown , trace fine sand; damp. 0 0	ADV bre	02/10/05	
Elev. Sample Sample (ff) (ff) No. (ff) (ff) No. 554.0 MOH A 353.7 WOH A 354.0 A 18 354.0 A 18 355.1 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35 18 3 35	I at completion: 9.8' (Prior to coring) 7.3' *Including drilling water) DESCRIPTION 7-6), brown , trace fine sand; damp.	ADATIO		
File Hand Till Till Till 11 13 55 11 18 18 11 18 18 11 18 18 11 18 18 11 18 18 11 18 18 11 18 18 11 18 18 11 18 18 11 18 18 11 18 3 11 18 3 11 18 3 18 18 3 18 18 3 19 18 3 11 18 3 11 18 3 18 18 3 19 18 3 11 15 15 12 15 15 13 5 18 125 18 3 125 15 15	80.0	pue pue		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		e	STANDARD PENETRATION (N) Natural Moisture Content % -	(N) N(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		#IS % #IS % % E' 25 % C' 25		н н
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 5 5	O	}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 - 1 29	20	
544.0 2 544.0 2 3 5 5			<u> </u>	
∞ ~ 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Stiff brown SILT (A-4b), little clay, trace fine to coarse sand; moist.		-0	
3 5 9 18 8 3 6 18 8 3 6 18 8 3 18 8 3 18 18 8 3 18 18 18 18 18 18 18 18 18 18 18 18 18		·····	C	
5 6 18 8	0	1 - 2 63	зб С	
		· · · - · · · · · · · · · · · · · · · ·		
20 <u>3</u> 5 8 18 9 1.5			yC	
4 8 10 1.5 1.5	0	0 - 1 72	27	
-25.0 - 529.0 2 4 11 1.5 Stiff brown SILT (A-4b 15 laminae; moist.	T (A-4b), some clay, trace fine sand, contains silt)	
3 4 5 18 12 1.0			O	· · · · · · · · · · · · · · · · · · ·

	į				Job No. 0121-3070.03
18-38			Location: Re	Rear Abutment SCI-823.00 over Slocum Ave Date Drilled: 02/09/05	to 02/10/05
	ა 	Sample No.			RADATION
	(U <u>I</u>) <i>K</i> I		Hand Penetro- meter	Water seepage at: 10.0'-21.5' 33.0'-38.5', 65.0'-80.0' ar level at completion: 9.8' (Prior to coring) 7.3' *Including drilling water)	pu
		0شرہ 2017 /	(tst)	DESCRIPTION	82 W % % F. Sai % Clay
2	- -	<u>್</u>	1.0		- 22
	·			Medium dense gray COARSE AND FINE SAND (A-3a); moist.	
7 118		4		0 21	- 50 20 10 Non-Plastic
· · · ·				Very stiff gray SILTY CLAY (A-6b), little fine sand; damp to moist	<u> </u>
12 18		<u>1</u> 5	3.5	TANE	
10 13 17 18		9	3.0	0	
0 13 18		17	6. 0.		
0 10 18			c. č	Very stiff gray SILT (A-4b), little fine sand, little silty clay, moist.	
			· · · · · · · · · · · · · · · · · · ·		

Cilent: I ransystems, Inc.	Asie	s, Inc.			Project: SCI-823-0.00			Job No. 0121-3070.03	0.03
LOG OF:	Boring	TR-38		Location:	Location: Rear Abutment SCI-823.00 over Slocum Ave Date Drilled:	02/09/05 1	to 02		
			Sample No.		WATER	GRADATION			
Depth Elev.	ber 6" K	(ui) Kiə		 /		pue pue		STANDARD PENETRATION (N) Natural Moisture Content, % -	(N) N(
r		лосея	өйлД	. ୧୭୦ (ts)	DESCRIPTION	% ∀38 85 'W % 85 'O % 98 'O %	ХӨ) % ЖS %	PL Blows per foot - 0	2
	4 8	918	19		Medium dense gray COARSE AND FINE SAND (A-3a), some silt, little clay; moist.	6 6 6			₽
<u> </u>					DRAFT)	
8 	6 6 7	18	5		@ 65.0', wet.			C	
68.0	<u> </u>			<u> </u>	Loose gray SANDY SILT (A-4a); wet.)	
02	40H 2 2	15	51			0 1 - 54			
-73.0	<u> </u>				Very dense gray GRAVEL WITH SAND (A-1-b); wet.]:]: 	/
15	9 20 50/3	13	53			50 19 - 12		<u>\$</u>	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						······			
	60° e	Rec 60"	ROD 90%		Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, arenaceous, thinly bedded to thickly bedded.		•		
85	Core 60"	Rec 60"	ROD 80%	R-2	@ 80.0' to 80.2', argillaceous zone, broken. @ 85.9',86.2',86.7', low angle clay filled fractures.				
- U									

 \bigcirc \bigcirc 0 \bigcirc \bigcirc 0 0 \bigcirc 0 000000000 0 0 0 0 0 0 0

Client: I ranSystems, Inc.	Astelli	٥, III.				Project: SCI-823-0.00				1 Job No. 0121-3070 03
LOG OF: Boring TR-38	oring	TR-3			ocation: Re	I-823.00 over Slocum Ave	Date Drilled: 02/09/05	9	02/10/05	
			Sar	Sample		WATER OBSEDIATIONIS		GRADATION	H	
	-	(U!) KIE		1	Hand Penetro- meter	UBSERVATIONS: Water seepage at: 10.0'-21.5' 33.0'-38.5', 65.0'-80.0' Water level at completion: 9.8' (Prior to coring) 7.3' *Including drilling water)	0.0.		Na N	STANDARD PENETRATION (N) Natural Moisture Content. % -
(ft) (ft) 90 464.0	SWOLE	Кесоле	θνήΩ	/ ୧୧୬୩୯	(tsf)	DESCRIPTION	900 ¥ 000 ₩	#!S % #S ' <u>-</u> '89 #S 'W %	<u> </u>	$PL \rightarrow 0.70 - 0.70 + 0.$
	Core 60°	33" 33"	RQD 55%	6 В R-3		Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, arenaceous, massively bedded, slightly fractured.	<u>ب</u>			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
95						@ 92.8' to 100.0', lost recovery; unknown reason.				
	Core 60"	0"C	RQD 0%	<u>7</u>						
-100.01 + 454.0-						Bottom of Boring - 100.0'				
105						DRAFT				
<u>5</u>				· · · · · · · · · · · · · · · · · · ·						
5 51 1										

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 \bigcirc \bigcirc 0 0 \bigcirc \bigcirc \bigcirc \bigcirc Ο Ο \bigcirc \bigcirc 0 0 0 0 0 0 Ο 0 0

 \bigcirc

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	
* 6	
4322	
밀	
US, C	
JMBI	
SOLL	
ROAD, COLI	
RO	
UNTLEY F	
HUN.	I
6121 HUI	
• •	
NIC. *	
₽	
Z OF	
٦	

٠

Client: I ranSystems, Inc.	2	A SIGNIS	, IIIC.				Project: SCI-823-0.00		AD 0705-1712 04 404
000	Щ Ш	LOG OF: Boring TR-38A	TR-35	Ă	9	cation: F		9	1/10/06
				Sample	ple		WATER		
Depth	Elev.		(uj) Au	ڈ 	1	Hand Penetro- meter	UBSERVATIONS: Water seepage at: 43.5', 73.5' Water level at completion: 43.0' (prior to coring) 13.6' (includes drilling water) 41.5' (afte-	្រា គ្រ គ្នាប់ គ្នាប់	STANDARD PENETRATION (N) Natural Moisture Content % -
(£) 0	(ft) 554.0	swol8	Весоие	өлілД	/ ଽଽଈ୳	(tsf)		% Aggre % C. Sai % F. Sai % F. Sai % Clay	$PL \vdash$
 	553.2-	2 4 8	13	~		4.5+	Topsoil - 9" Hard mottled brown and gray CLAY (A-7-6), some to "and" silt, trace fine sand; damp to moist.	0 - 4 42	₽
- 1 - 4		6 7 9	18	N		2.75	@ 3.5', Very stiff.		<u> </u>
н Т 8					P1	2.0	Stiff to very stiff mottled brown and gray SILT AND CLAY (A- 6a), trace fine sand; moist.	0 0 - 4 47 49	0
-7.5-		4 6 8	16	m		4.0	Hard brown CLAY (A-7-6), trace fine sand, some silt; damp to moist.	0 0 - 1 27 72	(
	-543.5-	345	6	4		1.25	Stiff brown SILT (A-4b), "and" clay, trace fine sand; moist.	0 0 - 3 54 44).
	-541.0-	3 3 2 2	18			2.0	Stiff to very stiff brown SILT AND CLAY (A-6a), trace fine sand; moist.	0 0 - 1 48 51) .
	-0.85c)		Р-2	1.5/1.0	Medium stiff to stiff brown SILTY CLAY (A-6b), trace fine sand; moist		•
		m					DRAFI	0 0 - 1 74 25	•
20.0	-534.0	4	18	G	с- -	1.75 1.0	Medium stiff brown SILT AND CLAY (A-6a), trace to little fine to coarse sand; moist.	0 7 4 53 36	-0===
55		3 5 Z	-18	~		2.0			
25.5 		2 8 2	18	æ		0.75	Medium stiff brown SILT (A-4b), little clay; wet.	0 - 0 82 18	• I)C
- <u>1</u>		3 4	Ş	თ		0.75			2

 \bigcirc Ο 0 0

Client: TranSystems, Inc.	vstems, li	сj			Project: SCI-823-0.00			Job No. 0121-3070.03
LOG OF: Bo	Boring TR	TR-38A		Location.	Location: Highland Bend Date Drilled: 1	1/9/06 to	1/10/06	06
			Sample			GRADATIC		
Depth Elev.	<u> </u>	(Uļ) KJG		Hand Penetro- meter		ាទ្ធបា ភ្លាប ទាំងសំ	S 1	STANDARD PENETRATION (N) Natural Moisture Content, % -
	swola	Recove	өлµД	(ssenq	a) DESCRIPTION	% 2!# % H: 29 % W S: 29 % C: 29 % W S: 29	Kej) %	$PL \vdash LL$ Blows per foot - \bigcirc 10 20 30 40
8 1 1 1 1 1 1	200 30 3	æ	9	0.75	DR RF1	0		
64 	+ + + +	18	7	0.75	<u>ī</u> 0		O	
	4 10	-	12a		Loose to medium dense brown FINE SAND (A-3), trace silty clay, trace coarse sand; wet.			
45.0 - 509.0	<u>61</u>	9	12 12	2.75 P-4 NC / 4.5+	 Very stiff brownish gray SILT AND CLAY (A-6a), little to some 4.5+ h silt, trace fine sand; moist. 1.5- Poorly graded sand with silt 1.00se to medium dense brown FINF SAND (A-3), frace silt. 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 Non-P	
22	2 3 1 1 8	<u>6</u>		4.0				
	7 10 14	<u>ດ</u>	4	2.75	@ 52.0', Very stiff. 5			0
-57.0-497.0-	6 30 10	÷	15	1.5	Stiff dark brown CLAY (A-7-6), little to some silt, trace fine sand; moist.	0 0 - 1 23	76	

\bigcirc \bigcirc \bigcirc 0

Client: TranSystems, Inc.	nSystem	1s, Inc.				Project: SCI-823-0.00			Job No. 0121-3070.03
LOG OF: Boring	Boring	TR-38A	ğ	Γος	ation: Hi	Location: Highland Bend Date Drilled: 1/9/06	to	1/10/06	
			Sample No.		•	WATER OBSERVATIONS:	GRADATION		
Depth El	ber e" Elev.				rtand Penetro- meter	water seepage at: 43.5/ /3.5' Water level at completion: 43.0' (prior to coring) 13.6' (includes drilling water) 41.5' (afte	BUE	STAN Natura	STANDARD PENETRATION (N) Natural Moisture Content, % -
		N0098	өviл	ଽଽ୶୳	(tsf)	DESCRIPTION	% Clay % Clay % F. Sa % M. S % M. S % % Mggm %	д В 6	L - LL Blows per foot - O 0 20 30 40
T F	-492.0-					SILT (A-4a), some fine)
83	4	- 1 3	9		0.5	sand, little to some clay; moist to wet.	0 - 29 48 23		
- <u>67.0-</u> -48	487.0-					Loose gray SILT (A-4b), trace to little fine sand, trace clay; moist to wet.	······		
02	4	4 12	Ç.			DRAFT		0	
-72.048: 75	482.0	318	<u> </u>			Loose to medium dense brown COARSE AND FINE SAND (A- 3a), little silty clay, trace gravel; moist to wet.			
77.047	-477.0-		6		6.4	Hard gray SILT AND CLAY (A-6a), trace to little fine sand; damp.	······································	•••••••••••••••••••••••••••••••••••••••	/ / / /
85	473.0 Core 60"	e Rec	RQD 65%			107-0			
86.0						@ 91.4', 91.9', 92.2', low angle fractures. Bottom of Boring - 86.0'			
G	_								

ίΟ

Soil Parameters Used in MSE Wall Stability Analyses Slocum Avenue

		TT	Stu	rength F	aramet	ers
Zone	Soil Type	Unit Weight	Undra	ained	Dra	ined
		(pcf)	с	ф	c'	φ'
Embankment	Compacted Embankment Fill	120	0	30	0	30
Foundation Soil (Rear Abutment) (Boring TR-37&38)	Very Stiff Clay	125	1700	0	0	29
Foundation Soil (Forward Abutment) (Boring TR-36&37)	Very Stiff Clay	125	1700	0	0	29

MSE Retaining Wall Parameters and Analyses Results Slocum Avenue (Rear & Forward Abutment)

Retained Soil (New Embankment)
Unit Weight = 120 pcf
Coefficient of Active Earth Pressure $(K_a) = 0.33$
(Based on $\phi = 30^{\circ}$)
Sliding along base of MSE wall
Sliding Coefficient (μ)(0.67) = tan 29° (0.67) = 0.37 Use (μ)(0.67)
Use $(\mu)(0.67) = 0.35$ as a maximum value as per AASHTO, BDM, 303.4.1.1
Allowable Bearing Capacity – Undrained Condition
$q_{all} = 3,564 \text{ psf}$
For MSE wall with minimum 56-foot long reinforcing
Allowable Bearing Capacity - Drained Condition
$q_{all} = 11,895 \text{ psf}$
For MSE wall with minimum 56-foot long reinforcing
Global Stability
Factor of Safety Undrained Condition = 1.2
Factor of Safety – Drained Condition = 1.5
Factor of Safety – Seismic Condition = 1.4
For MSE wall with 56-foot long reinforcing
Estimated Settlement of MSE volume
Total settlement = 21 inches
Differential settlement = $0.8\% < 1/100$
Full Height of MSE Wall = 59.7 feet
Minimum Embedment Depth = 3.0 feet
Minimum Length of Reinforcement for External Stability = $0.90*(H+D)=56$ feet
Maximum Construction Stage = 30 feet

Client TranSystems / ODOT D-8 Project SCI 823-0.00 Portsmouth Bypass Item Bearing Capacity (Rear Abutment) 08 - 823 over Slocum Borings TR-37 & TR-38

JOB NUMBER	0	121-307	0.03
SHEET NO.	/	OF	Z
COMP. BY	SJR	DATE	8/15/06
CHECKED BY	DAA	DATE	8-17-06

Embankment fill

Embankment fill

Foundation soil

Foundation soil

Foundation soil

Foundation soil

Foundation soil

BEARING CAPACITY OF A MSE WALL Ref: {AASHTO; STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, 17th Edition, 2002} Soil Properties TRAFFIC LOADING 120 Unit weight pcf **Үемв** = Φ'_{EMB} 30 deg. Friction ang. = EMBANKMENT 125 pcf Unit weight = YFDN REINFORCED FILL 1700 Cohesion с psf = ZONE 0 ø = deg. Friction ang. Н c' 0 psf Cohesion = Ρ 29 ¢' deg. Friction ang. ≓ 111111 Loads and Parameters Ο D e 240 Traffic loading ω_t = psf w L=B 56.43 ft Length of MSE reinforcement ≓ L factor = 0.9 Length factor-range (0.7 - 1.0) Effective Bearing Pressure D 3 ft = Embedment depth $\sigma_{v} = \frac{W_{t} + W_{MSE}}{L - 2e}$ Dw = 0 ft Groundwater depth ?v = 9,073 H+D psf 62.7 ft = Η 59.7 ft Height of wall = Ultimate undrained bearing capacity, q "u Ka 0.33 = Г Ра = 20.9 ft Moment arm $q_{ULT} = c N_c + \sigma'_D N_q + \frac{1}{2} \gamma' B N_{\gamma}$ q_{илт} = 8,911 psf Γ Wt _ 31.35 ft Moment arm B' = 48.29 ft $q_{ALL} = \frac{q_{ULT}}{FS}$ q_{all} = 3,564 psf γ = 57.6 pcf W, 13,543 lb/ft of wall Factor of Safety = 0.98 No Good W_{mse} 424,579 lb/ft of wall Ultimate drained bearing capacity, q ut **Bearing Capacity Factors for Equations** Undrained Drained $q_{ULT} = c' N_c + \sigma'_D N_q + \frac{1}{2} \gamma' B N_y$ $q_{UCT} = 29,738 \text{ psf}$ N_c N_c 5.14 27.86 1.00 Na Nq 16.44 $q_{ALL} = \frac{q_{ULT}}{FS}$ $q_{ALL} = 11,895 \text{ psf}$ Ν. N 0.00 19.34 OK Factor of Safety = 3.28 Eccentricity of Resultant Force

9.41

ft

<u>Kern</u>

e < L/6 =

4.07 ft

e

≒

Weight from traffic

Weight from MSE wall

()

 \bigcirc \bigcirc 0 0 0 0 0 0 0 0 0 \bigcirc \bigcirc Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc \bigcirc : Slocum Avenue Rear Abutment Sta. 122+02 Based on TR-37 & TR-38 Composite Stength Values H=59.7' (Embankment Height) \bigcirc : . . . 0 Splil Through Slopes - \bigcirc Drained FS=1,810 Seismic FS=1,633 \bigcirc 21 Slopes 0 \bigcirc $\supset \parallel$ \bigcirc \bigcirc 0 \bigcirc 0 \bigcirc ទី 0. 0 (psf) | ¢' (deg) 8888888 2.0 0 Drained - Undrained FS=1.357 0 0 (deg)
 Undrained 0 (psf) 0000 0 3750 1500 202 \bigcirc Sitt Clay Sitty Clay Sand & Gr Bedrock Soll Type Enb. Fill Clay 0 ; ; \bigcirc <u>Consistency</u> 0 \bigcirc Θ 0 Ð 6 6 0 Compacts M. Stiff ensi Dense Ο Material 2 M. <u>Material 4 |</u> Material 5 | Material 6 | Material 7 Material \bigcirc Material la ter la \bigcirc \bigcirc Ο \bigcirc \bigcirc

PR0JECT ND. 0121-3070.03 :proj012112070.0315tability Analyses!MSE Wall and Embantment Profiles. dwg. 8/16/2006 10:42:31 AM, NDXatretiQ_geolechholj5100m

8/16/06

DATE

Ч,

CALCI

SCI-823-0, 00

SPILL THROUGH SLOPE STABILITY ANALYSIS BASED ON BORING TR-37 & TR-38 DRAINED & UNDRAINED ANALYSIS 823 DVER PERSHING-SLDCUM
						~			
			((
		CLIENT_	Tren Syst	ms_/	ODOT D	- 9	PROJECT NO.	0121-3070	0.03
ENGINEERS	ARCHITECTS · SCIEN	PROJECT	561-82	3 Ports	mouth E		SHEET NO.	OF	<u> </u>
PLA)	NNERS • SURVEYORS			dation :			COMP. BY	v	
		<u>75E</u>	Wall -	823 over	Pershing /	Sleen	CHECKED BY	DATE	
	A I								
	Co and	Cr valu	es were	determin	ned from	Consoli	dation Te	st Results	
		1			, ,		,		
	The follow	sing born	ngs had C	msolidatio	m testing	perform	not.		
	F	or tests	see the	posed Hid	ghland Be	nd Embar	kments, o	hated June 8,	2006.
	Boring	Depth	Soil	Ca	Cr	P			
	R-61	6.0	A-7-6	0.21	0.05	6,000 pst	C .		
	TR-38A	/5.7	A-66	0.18	0.04	9,000			
	7R-38 A	45.8	A-6a	0.19	0.07	3,000			
	TR-35 A	12.4	A-46	0.10	0.01	4,000			
	TR-35A	27.Ó	A-46	0.27	0.08	3,000			
	TR-35 A	66.9'	A.46	0.10	0.01	2,000			
	R-64	18.0	A.6a.	0.24	0.04	6,000			
	* Lawre	at si	nilar elev	ations	and havi	ng simila.	~ Attal.	n limite	
					~	ig cinina	inciom	g Limits	
	were	also as	signed i	the same	Consolid	ation pai	ameters.		
	were a	also as	signed	the same	Consolid	ation pai	iometers:	• •	
	were d Layer	also as Thickn	signed	the same Cc	Consolid Cr	ation pai PL	rameters: Lo	Y	
	Layer	also as Thickn	signed s ess Soil	Hhe ≤ame Cc	Consolid Cr	Ation pai PL	ameters.	Y	
	Layer Layer	also as Thickn 3.0	signed : ess Soil Gran.	Hhe ≤ame Cc F;II ⊙	Consolid Cr o	PL 0	emeters Lo	Y 120	•
	Layer Layer 1 Layer 2	also as Thickn 3.0 7.0	signed s ess Soil Gran. A-7-6	Hhe ≤ame Cc Fill 0 0.21	Consolid Cr o 0.05	PL PL 0 6,000	esame ters: 	Y 120 125	
	Loyer Loyer Loyer 1 Loyer 2 Loyer 3	also as Thickn 3.0 7.0 24.0	signed ess Soil Gran. A-7-6 A-4b	Hhe ≤ame Cc Fill 0 0.21 0.24	Consolid Cr 0 0.05 0.04	ention pai PL 0 6,000 6,000	erame ters:	Y 120 125 122	
	Layer Layer 1 Layer 2 Layer 3 Layer 4	also as Thickn 3.0 7.0 24.0 25.0	signed s ess Soil Gran. A-7-6 A-46 A-66	He ≤ame Cc Fill 0 0.21 0.24 0.22	Consolid Cr 0.05 0.04 0.06	ention pai PL 0 6,000 6,000 4,000	0.76 0.68	Y 120 125	
	Loyer Loyer Loyer 1 Loyer 2 Loyer 3	also as Thickn 3.0 7.0 24.0	signed ess Soil Gran. A-7-6 A-46 A-66 A-46	Hhe ≤ame Cc Fill 0 0.21 0.24	Consolid Cr 0 0.05 0.04	ention pai PL 0 6,000 6,000	erame ters:	Y 120 125 122	

.

SLOCUM MSE - Settlement Analysis

ÚÄÄÄÄÄ ONE DIMENSIONAL SETTLEMENT ANALYSIS/Federal Highway Administration ÄÄÄÄÄ INCREMENT OF STRESSES BENEATH THE END OF FILL CONDITION э 3 Project Name : SCI-823 Client : TranSystems з File Name : Slocum MSE Project Manager : Nix з Computed by Date : 8/15/10 : SJR з з з Settlement for X-Direction 3 150.00 (ft) 150.00 (ft) 100.00 (ft) 400.00 (ft) 3 Embank. slope, x direc. = Height of fill H 60.00 (ft) = Unit weight of fill = 120.00 (pcf) p load/unit area = 7200.00 (psf) з y direc. = 3 Embankment top width = з Embankment bottom width = Foundation Elev. 555.00 (ft) = з Ground Surface Elev. 555.00 (ft) = 3 Water table Elev. 550.00 (ft) \simeq Unit weight of Wat. =62.40 (pcf) Э з з з з LAYER COEFFICIENT UNIT SPECIFIC VOID з COMP. RECOMP. SWELL. N§. TYPE THICK. WEIGHT GRAVITY RATIO 3 (ft) (pcf) 3 з з 1 INCOMP. 3.0 120.00 ----_ _ _ _ з 2 COMP. 7.0 0.210 0.050 0.000 125.00 2.65 з 0.76 3 3 COMP. 24.0 0.240 0.040 0.000 122.00 2.65 з 0.78 з 4 0.220 25.0 COMP. 0.060 0.000 125.00 2.65 0.68 Э з 122.00 5 COMP. 13.0 0.240 0.040 0.000 2.65 0.70 з з 6 INCOMP. 7.0 125.00 з _ _ _ _ _ ____ ____ Э з Э SUBLAYER SOIL STRESSES з N§. THICK. ELEV. INITIAL MAX.PAST PRESS. з (ft) (ft) (psf) (psf) Э з INCOMP. 7.00 з з 1 3 2 548.50 703.90 6000.00 з з 3 12.00 539.00 1280.60 6000.00 з 4 12.00 527.00 1995.80 6000.00 з з 12.50 12.50 514.75 5 2744.65 4000.00 з 3 6 502.25 3527.15 4000.00 з з 7 13.00 489.50 4305.80 4000.00 з 3 8 INCOMP. Э Э з з з з 0.00 X = 25.00 X = X = 50.00 X = 75.00 э 3 Layer Stress Sett. Stress Sett. Stress Sett. Stress Sett. Э з (psf) (in.) (psf) (in.) (psf) (psf) (in.) Э (in.) З з з INCOMP. 27.75 1 INCOMP. INCOMP. INCOMP. з з 2 0.04 $1193.60 \\ 1209.58$ 637.86 0.67 1.03 1826.39 1.33 з З 112.04 617.29 3 0.12 0.55 0.93 1810.41 1.24 з З 4 206.28 0.14 649.90 0.40 1216.81 0.67 1804.73 з 0.91 3 5 0.24 701.54 295.87 0.53 1233.29 0.86 1800.41 1.97 Э 3 6 381.91 760.98 1256.31 0.89 1794.98 3 1.82 2.73 Э 463.65 7 1.68 821.69 2.38 1282.10 3.20 1787.47 3 4.03 з R INCOMP. INCOMP. INCOMP. INCOMP. з 3 з з 2.46 5.41 8.51 12.19 3 з з з з з X =100.00 125.00 X =X ≂ 150.00 X = 175.00 з Page 1

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

3 3 3	Layer	Stress (psf)	Sett. (in.)	SLOCUM Stress (psf)	MSE - Se Sett. (in.)	ttlement Stress (psf)	Analysis Sett. (in.)	Stress (psf)	Sett. (in.)	3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3	234567	INCOMP. 2456.91 2410.40 2392.02 2366.68 2332.29 2290.68 INCOMP.	INCOMP. 1.56 1.49 1.11 2.97 3.55 4.78 INCOMP.	INCOMP. 3007.45 3000.22 2956.98 2895.73 2823.16 2743.97 INCOMP.	INCOMP. 1.72 1.70 1.28 3.81 4.24 5.42 INCOMP.	3607.71 3501.90 3397.53 3296.31 3193.21 3087.50	1.88 1.85 1.40 4.39 4.72 5.88	3634.17 3600.27 3550.38 3477.22 3385.81 3281.40	1.88 1.88 1.44 4.96 6.12	3 3 3 3 3 3 3 3 3 3 3
3 3 3			15.45		18.16		20.11		20.93	3 3 3 3
3 3 3 3	Layer	X = Stress (psf)	200.00 Sett. (in.)							3 3 3
3 3 3 3 3 3 3 3 3 3 3	2 3 4 5 6 7	INCOMP. 3634.75 3607.12 3573.68 3517.66 3438.20 3339.92 INCOMP.	1.88 1.88 1.44 4.70 5.02 6.20							3 3 3 3 3 3 3 3 3 3 3 3 3 3
з з э ÀÄ	ääää I	Hit arrow	21.13 keys to	display	next scre	en. <f8></f8>	Print.	<f10> Maiı</f10>	n Menu	3 3 9 3 3 ÄÄÄÄÄÜ

 \bigcirc

 \bigcirc

Ο

 \bigcirc

Ο

 \bigcirc

Ο

0

Ο

Ο

Ο

0

Ο

0

 \bigcirc

0

Ο

Ο

 \bigcirc

Tran Systems / ODOT D-9 CLIENT____ PROJECT NO. 0121-3070.03 Portsmouth Bypass 561-823 PROJECT_ SHEET NO. 4 4 0F ENGINEERS • ARCHITECTS • SCIENTISTS Settlement_ SUBJECT_ Differential PLANNERS · SURVEYORS 8-16-06 COMP. BY SIR DATE (MSE Wall - BZ3 over Pershing and Slowm CHECKED BY_ DA DATE 8-17-06 + Assuming 2.5:1.0 Embankment Slopes 1.0 60 150 50 TOF 5= 21.13 5= 2.46 100 (21.13°-2.40°)(1/12°) Differential Settlement : 0.008 (150' + 50) 0.8% < 1.0% OR 0 (

 \bigcirc

О

 \bigcirc

 \bigcirc

Ο

 \bigcirc

Ο

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \bigcirc

 \bigcirc

 $O_{(}$

CN-Patrick J. Plews

From:	Steven Riedy [sriedy@dlzcorp.com]
Sent:	Wednesday, August 23, 2006 7:39 AM
То:	CN-Patrick J. Plews
Cc:	Pete Nix
Subject:	Strucural Foundation Review - SR 823 over Slocum Avenue

Patrick,

At the request of TranSystems we have reviewed the foundation recommendations for the structure at proposed SR 823 over Slocum Avenue. Based upon the current information, it is anticipated that HP 14x73, 95 ton driven piles will be founded on bedrock. It is my understanding that the original preliminary structural foundation recommendations have been modified as per conversations between DLZ and TranSystems. It appears that the concern was a clay layer first encountered at approximately elevation 520. It is possible that the piles may be founded in this clay layer. However, if this layer does not have sufficient strength, it is anticipated that the piles will likely be founded on bedrock. To better estimate the pile lengths, it is recommended that the contractor drive test piles at each structure location *prior to ordering piling for this project*. Estimated pile tip elevations are included below. All updated recommendations will be included in the final structural recommendations for this structure.

Boring Number	Structural Element	Existing Ground Surface Elev* (Feet)	Top of Rock Elev* (Feet)	Estimated HP 14x73, 95 ton pile Tip Elev* (Feet)
TR-36	North Abutment	552.6	480.6	481
TR-37	Pier	556.1	477.1	477
TR-38	South Abutment	554.0	474.0	480

* Elevations have been established based upon as-drilled survey information.

Please feel free to contact me if you need any additional information. Thanks, Steven

Steven J. Riedy Geotechnical Engineer

Telephone: (614) 888-0040 Cellular Phone: 614-332-9146 FAX: (614) 848-6712 e-mail: sriedy@dlz.com

6121 Hundey Road • Columbus, Ohio 43229-1003

NOTICE: The information contained in this electronic transmission is intended for use by the addressed individual or entity and may contain conflictnial or priorile god information. If you have received this transmission in error please reply to sender then delate the message without copy or forward.

CN-Patrick J. Plews

From:	Steven Riedy [sriedy@dlzcorp.com]
Sent:	Friday, August 18, 2006 3:26 PM
То:	CN-Patrick J. Plews
Subject:	SCI-823 Slocum Spill Through Slopes

Patrick,

As per our earlier conversation; For the spill through slopes, the factor of safety of 1.3 for global stability is used when assuming deep foundations for the structures. Settlement was not evaluated specifically for the spill through slopes in the MSE wall letter. Settlement and consolidation periods were evaluated in our report *Proposed Highland Bend Embankments*, dated June 8, 2006. The settlement was evaluated for the roadway embankment from station 116+00 to 122+00. The maximum settlement for the full height embankment was estimated to be approximately 38 inches. The stability calculations indicate that the spill through slopes are stable in the undrained condition. However, due to more critical soil profiles, higher embankments, and given short length of this embankment (approx. 600 feet), the staged construction and consolidation estimates calculated for the roadway embankment is approximately 3287 days without wick drains. Wick drain spacings and time-rate estimates are provided for each embankment in the highland bend area.

For more detailed information pertaining to the embankments, please refer to the above mentioned report.

Let me know if you need anything else.

Thanks,

Steven

Steven J. Riedy Geotechnical Engineer

Telephone: (614) 888-0040 Cellular Phone: 614-332-9146 FAX: (614) 848-6712 e-mail: sriedy@dlz.com

6121 Hundley Road * Columbus, Ohio 43229-1003

NOTICE: The information contained in this electronic transmission is intended for use by the addressed individual or entity and may contain confidential or prizile ged information. If you have received this transmission in error please reply to sender then delete the message without copy or forward.

8/18/2006

March 31, 2005

Mr. Greg Parsons, P.E. Project Manager TranSystems Corporation 5747 Perimeter Dr., Suite 240 Dublin, OH 43017

Re: SCI-823-0.00 over Slocum Ave. (Highland Bend) Preliminary Structural Foundation Recommendations Project SCI-823-0.00 DLZ Job No.: 0121-3070.03

Dear Mr. Parsons:

This letter reports the findings of the subsurface exploration and preliminary foundation recommendations for the proposed structure SCI-823-0.00 over Slocum Ave within the Highland Bend area. It is anticipated that the proposed structure will be a two-span, elevated bridge with embankment fills at both abutments. The existing grade at the proposed new bridge location is relatively flat with an elevation around 555. It is anticipated that the SCI-823-0.00 mainline will require an embankment constructed to approximate heights of 40 to 70 feet. The existing Highland Bend area is located within the Little Scioto River valley with the overburden being primarily composed of glacial and alluvial deposits.

The findings and recommendations presented in this report should be considered preliminary. It is understood that the final number and locations of substructure units have not been determined yet. After the substructure unit locations have been established, the results of the borings should be reviewed to determine if additional exploration is needed to finalize the foundation recommendations for the new structure.

Field Exploration

A total of three borings, TR-36 through TR-38, were drilled at the proposed structure between January 27, 2005 and February 10, 2005. The borings were drilled to depths between 94 and 100 feet. The borings were extended into bedrock, which was verified by rock coring. Boring Logs and information concerning the drilling procedures are attached.

Mr. Greg Parsons, P.E. March 31, 2005 Page 2

The boring locations were selected by TranSystems Corporation. Ground surface elevations at the boring locations were estimated from the established topographic mapping for the project and are presented on the attached Boring Logs.

Findings

The following text presents generalized subsurface conditions encountered by the borings. For more detailed information, please refer to the attached Boring Logs.

At the ground surface, topsoil was encountered to depths of 3 to 4 inches. Beneath the topsoil, generally cohesive soils were encountered to the top of bedrock with intermittent layers of granular soil. The cohesive soils encountered ranged from sandy silt (A-4a) to silt and clay (A-6a), and were generally stiff to very stiff. The granular soils ranged from sandy silt (A-4a) to fine sand (A-3). The granular soils were generally very loose to medium dense. Boring TR-36 encountered thicker granular layers than TR-37 or TR-38.

Bedrock was encountered between 73 and 80 feet below the ground surface, which generally was a medium hard to hard sandstone that was slightly broken to intact. Borings TR-36 and TR-37 encountered a siltstone layer ranging in thickness from 1.5 to 1.7 feet within the sandstone. Recovery of the core samples ranged from 0 to 100%, and RQD values ranged from 0 to 99% with an average RQD of 74%.

Seepage was detected in all of the borings ranging in depth from 10 to 80 feet below the ground surface. Seepage was generally detected within granular layers. Water levels recorded at completion of drilling ranged from 3.0 to 12.0 feet. However, the final water levels include drilling water and may not be representative of the actual groundwater conditions. Groundwater levels may vary seasonally, and may be influenced by the level of the Little Scioto River.

Conclusions and Recommendations

It appears that driven H-piles to rock or drilled shafts to rock will be the best-suited foundation types for the support of the proposed structure. Due to the size of the structure, if H-piles are used it is anticipated that HP 14X73 H-pile sections, with a 95-ton capacity, will be used. If high lateral or uplift loads are anticipated drilled shafts or socketed H-piles into bedrock may be needed. The actual lengths of the rock sockets will need to be designed based upon actual loading conditions. The following table summarizes the site conditions and preliminary foundation recommendations.

Mr. Greg Parsons, P.E. March 31, 2005 Page 3

Boring Number	Structural Element	Existing Ground Surface Elevation* (Feet)	Top of Rock Elevation* (Feet)	Estimated H-pile Tip Elevation* (HP 14X73 95 Ton capacity)	Estimated Drilled Shaft Tip Elevation*	Allowable Bearing Capacity for Drilled Shafts (TSF)
TR-36	North Abutment	555	482	,582 482	476	20
TR-37	Pier	555	476	509 476	472	20 .
TR-38	South Abutment	· 555	475	498 475	472	.20

*Existing ground surface elevation was estimated from the established topographic mapping. PAUL PAINTER ON 6/20/05 "NEED TO PRIVE TO BEDROCK".

Additionally, since the SCI-823-0.00 mainline will be located on a relatively large embankment through the Highland Bend area, and could be potentially underlain by compressible soils, the abutment locations may need special construction procedures, and/or an additional load added to the design loads to account for negative skin friction associated with the embankment settlement.

It should be noted that if driven H-piles are selected, special pile-driving techniques may be required. Wet silts and fine sands, such as those encountered within this area, tend to produce exaggerated blow counts during pile driving, due to increased pore pressures during driving, which do not reflect the actual load carrying ability of the strata. Piles should be driven to the design capacity, allowed to sit at least 24 hours to allow pore pressures to dissipate, then redriven to ensure that the design capacity has been achieved. If the design capacity has not been achieved, the pile should be re-driven until the design capacity has been achieved with confirmation after 24 hours.

Spread footings could be considered, but differential settlement concerns would need to be addressed. Recommendations can be presented if the spread footing option is considered. Preloading or other techniques may be necessary if footings are used.

Mr. Greg Parsons, P.E. March 31, 2005 Page 4

Because of the many geotechnical factors across the anticipated structure location, such as, large potential lateral loads, large embankment heights, depths of relatively compressible soils, and potential for differential settlement, a detailed evaluation of all geotechnical parameters will need to be considered for the final design. It is strongly recommended that we discuss the proposed foundation design after TranSystems has had a chance to review these recommendations.

No grain-size analyses were performed for scour analysis since the proposed structure location is not located along a stream.

Closing

If you have any questions or wish to schedule an opportunity to discuss the recommendations presented, please contact our office.

Sincerely,

DLZ OHIO, INC.

P. Paul Painte

P. Paul Painter Engineering Geologist

Sorothy a. adams for

Arthur (Pete) Nix, P.E. Geotechnical Division Manager

Attachments: General Information - Drilling Procedures and Logs of Borings Legend – Boring Log Terminology Boring Location Plan Boring Logs TR-36, TR-37, TR-38

cc: File

M:\proj\0121\3070.03\Structures\Slocum Ave\slocum ave lt.doc

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Geot\Forms\General Info English.doc

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot
Term	Standard Penetration
Very Loose	0-4
Loose	4 – 10
Medium Dense	10 – 30
Dense	30 - 50
Verv Dense	over 50

Cohesive Soils - Consistency

Very Softless than 0.25 below 2Easily penetrated by fistSoft $0.25 - 0.50$ $2 - 4$ Easily penetrated by thumbModium Stiff $0.50 - 1.0$ $4 - 8$ Penetrated by thumb with moderate pressure	Soft Medium Stiff Stiff Very Stiff	tiff $\begin{array}{c} 0.25 - 0.50 \\ 0.50 - 1.0 \\ 1.0 - 2.0 \\ 2.0 - 4.0 \end{array}$	2 - 4 4 - 8 8 - 15 15 - 30	Easily penetrated by thumb Penetrated by thumb with moderate pressure Readily indented by thumb but not penetrated Readily indented by thumb nail	
---	---	---	-------------------------------------	--	--

- b. Color If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".
- c. Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows:

Description	<u>Size</u>	Description	Size
Boulders	Larger than 8"	Sand – Coarse	2.0 mm to 0.42 mm
Cobbles	8" to 3"	– Fine	0.42 mm to 0.074 mm
Gravel – Coarse	3" to ¾"	Silt	0.074 mm to 0.005 mm
– Fine	¾" to 2.0 mm	Claý	smaller than 0.005 mm

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English.doc

d. The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes. e.

e	÷.	Modifiers to main s	soli descriptions are indicated as a percentage by weight of particle sizes.
		trace 0 to 1 little 10 to some 20 to "and" 35 to	20% 35% 50%
f	•	Moisture content o	of cohesionless soils (sands and gravels) is described as follows:
		<u>Term</u>	Relative Moisture or Appearance
		Dry Damp Moist Wet	No moisture present Internal moisture, but none to little surface moisture Free water on surface Voids filled with free water
ę	ġ.	The moisture cont	ent of cohesive soils (silts and clays) is expressed relative to plastic properties.
		<u>Term</u>	Relative Moisture or Appearance
		Dry Damp Moist Wet	Powdery Moisture content slightly below plastic limit Moisture content above plastic limit but below liquid limit Moisture content above liquid limit
10.	Roo	ck Hardness and Re	ock Quality Designation
	a.	The following term	ns are used to describe the relative hardness of the bedrock.
		Term	Description
		Very Soft	Permits denting by moderate pressure of the fingers. Resembles hard soil but has rock structure. (Crushes under pressure of fingers and/or thumb)
		Soft	Resists denting by fingers, but can be abraded and pierced to shallow depth by a pencil point. (Crushes under pressure of pressed hammer)
		Medium Hard	Resists pencil point, but can be scratched with a knife blade. (Breaks easily under single hammer blow, but with crumbly edges.)
		Hard	Can be deformed or broken by light to moderate hammer blows. (Breaks under one or two strong hammer blow, but with resistant sharp edges.)
		Very Hard	Can be broken only by heavy and in some rocks repeated hammer blows.
	b.	Deale Occaliby De	signation, RQD – This value is expressed in percent and is an indirect measure of rock soundness. It is uming the total length of all core pieces which are at least four inches long, and then dividing this sum by the
11.		Rock Quality De obtained by sum total length of the	signation, RQD – This value is expressed in percent and is an indirect measure of rock soundness. It is uming the total length of all core pieces which are at least four inches long, and then dividing this sum by the

13. The standard penetration (N) value in blows per foot is indicated graphically.

 \bigcirc

	AP 0121-3070.03			STANDARD PENETRATION (N) Natural Moisture Content, % -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0=	98 91			-0-	0	68 34 24 24 24 24 24 24 24 24 24 24 24 24 24		9	
\bigcirc			11/0/	p	NES .7 %											N]
\bigcirc		Į	GRADATION		ies .M %		I		1					1		1 0	
\bigcirc	유		Sl <u>a</u>		ns≳ .⊃ % % C. San		0		0 0							0	
	DLZ OHIO INC. • 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 • (614)888-0040		SCI-823.00 over Slocum Ave Date Driffed:	WAIEH OBSERVATIONS: Water seepage at: 62-73' Water level at completion: 12.0' (Prior to coring) 12.0' (includes drilling water)	DESCRIPTION	Topsoil - 4" Very stiff brown and gray CLAY (A-7-6), trace fine sand; moist. @ 0.3'-1.8', contains root fragments.	· · ·	Very stiff brown CLAY (A-7-6), trace fine sand; varved; moist.				@ 16.0', brown and brownish gray.		Very stiff brown SILT (A-4b); varved; moist.		-	@ 28.0', gray, moist.
\bigcirc			Location: F	Hand Penetro-	(tsf)	5.0	3.0	3.0	3.0	2.5	3.25	3.0	3.0	3.25	3.0	3.5	2.75
				e e	no) / ssə	ld	4									=	12
				Sample No.	Әлі.		20	n	4	ى 	ں 		~~~~	о 	2 	 	
		TranSvstems, Inc.	ing TR-36		sconery (3 4 18 ,	2 3 5 16	3 4 6 18	2 4 5 18	3 4 5 18	4 5 6 18	3 4 5 18	3 4 18	2 4 4 18	2 2 , 18
		Client TranSvs			Depth Elev. (ft) (ft)	0.3 555.0		2 ² 5 ² 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁴	 		2 2 2 2			-20.5	 55	- ! - 1 -	
С		Č	ت] ⁵	ļ									(WV 90:6	\$002/82/8	E 1 E0-010	05-1210 :3	1113

 \bigcirc \bigcirc \bigcirc \bigcirc

Project: SCI-823.00 over Slocum Ave Date Drifted Location: Forward Abutment SCI-823.00 over Slocum Ave Date Drifted Mand WATER Description: Location is a completed at c
Location: Location: Alano Penetr meter 3.75 3.75 3.75 3.75 3.75 3.75
θ ^{νηα} τ τ τ θ
Image: Note of the state of the st

0 0 |

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

O.

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

0

0

40 144 AV2 0121-3070 03		10 RADATION	pue pues pues	Blows per foot - \bigcirc				0 							
DLZ OHIO INC. • 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040		Forward Abutment SCI-823.00 over Slocum Ave Date Drilled: 01/31/05	WATEH OBSERVATIONS: Water seepage at: 62-73' Water level at completion: 12.0' (Prior to coring) 12.0' (includes drilling water)	DESCRIPTION	Hard gray SILT (A-4b); damp.	Very loose gray SANDY SILT (A-4a); wet.		@ 69.0', medium dense.	Hard light gray SANDSTONE; very fine to fine grained, moderately weathered, argillaceous, thinly bedded to medium	bedded, contains argillacous clasts. @ 74.4'-75.7', very broken. @ 76.0',76.3', low angle fracture. @ 77.6',77.7', low angle fracture.	@ 79.6', low angle fracture.	@ 81.0'-81.4', high angle thin shale burrow. @ 81.7',82.1', low angle fracture.	Medium hard dark gray SILTSTONE; moderately weathered,	thinly bedded, brokett. Hard light gray SANDSTONE; very fine to fine grained, moderately weathered, argillaceous, thinly bedded to medium bedded, contains argillacous clasts.	
	Criterat' TranSvstems, Inc.	OF: Boring TR-36 Location:	(in) Sample	Depth Elev. Per (15) (11) (11) (11) (12) (15) (11) (11) (11) (12) (15)	а и	-62.0493.0-	65	70 0 4 18 20	73.0-482.0- 50/1-1-21	75	A Core Rec RCD R-1 120" 116" 70% R-1		a 1	0-070£-1210 : 	Core Rec ROD R-2

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 • (614)888-0040

•			•																	
		V) IVOIL		‡ 0																
		CNGTR /	Conten	foot - 30																1 1 1 1
		(N/ NOIT & STATE DEALETE & STATE AND A	Natural Moisture Content, %	Blows per foot																
02/01/09			STAN Natural PL	8 Q																-
5		<u> </u>	Лŧ	3) %																
2	ß			11!S %			<u> </u>			·										
	GRADATION			2 H %		_								<u> </u>		. <u> </u>				
0	GRA		pues Sand	· ') %	· · · · · · · · · · · · · · · · · · ·											<u> </u>				_
01/10/10			aiegaie				. <u></u> .													
Ś	F	1			5															
60					Hard light gray SANDSTONE; very fine to fine grained, moderately weathered, argillaceous, thinly bedded to medium bedded, contains argillacous clasts. @ 90.2'-90.5', limestone layer. @ 92.6'-97.1', calcareous.															
Date United:	ĺ		ک		, me										·					
L al			watei		Hard light gray SANDSTONE; very fine to fine grained, moderately weathered, argillaceous, thinly bedded to π bedded, contains argillacous clasts. @ 90.2'-90.5', limestone layer. @ 92.6'-97.1', calcareous.															
			ng) lling		e gr															
v			o cori ss dri		/ pe	5														
2			cior to clude		ninly	Bottom of Boring - 94.0'													•	
202		23	epage at: 62'-73' npletion: 12.0' (Prior to coring) 12.0' (includes drilling water)		/ fin s, tt	D D														
	5	62	다. 12:0 12:0	Τd	ver) eou asts	li.i														
Ver V	2	e at:	ü	ïСН	s cl	E B														
С С		page	npleti	ЭЕ С	TON argi s agi	Ē														
c cí		r see	t con		roned, COS	ĮĔ														
α-1	2	Water seepage at:	vela		AN her nes															
ũ			Water level at completion:		Hard light gray SANDSTONE; very moderately weathered, argillaceous, bedded, contains argillacous clasts. @ 90.2'-90.5', limestone layer. @ 92.6'-97.1', calcareous.	.]														
ţ		NS:	Wat		0.5 v v 2.7															
111		ATIC			6 2 d d d															
1 > 5	P				1 p g g g															
5		WATER OBSERVATIONS:			1° ĕ 800	7														
	FORWard ADUILITEIN 301-0420-0420 COST					1														
	ŝ	Hand	Penetro- meter	(tst)																
7	Location:	I	Pen Pen Me																	
	3	ð	Core	/ ssəı	3												<u> </u>	- <u>-</u>	· • •	
		Sample No.		-	2															
-	20	5						·												
1	TR-36		(u) A	iənocə,	н Н														<u> </u>	
ľ	ŋg		"8 18	od smol	8															
ľ	Sorii	 	<u> </u>			╞														
	OF: Boring	l	t	(j) (j)	465.0	-461.0-		•											r	_
	j O						1 1	<u> </u>					1 1	,	 		l –	۱ م	1 1	
	LOG	1		Depth (ft)	06	-94.0-	92		- 001		•	105.			011			115		

Discription O <td< th=""><th>DLZ OHIO INC 6121 HUNTLEY FROAD, COLUMBUS, OHIO 43223 DLZ OHIO INC 6121 HUNTLEY FROAD, COLUMBUS, OHIO 43223 Project: SCI-823-0.00 Project: SCI-823-0.00 DBSERVATIONS: Water seepage at: 16.0-18.0, 37-37.5, 68 WAITER WAITER WAITER DBSERVATIONS: Water seepage at: 16.0-18.0, 37-37.5, 68 WAITER Water level at completion: Not Recorded WAITER B.G., hard; damp. B.G., hard; damp. B.G., hard; damp. B.G., hard; damp. B.G., hard; damp. <th>DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43229 DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43239 Project: SCI-823-0.00 Date Project: SCI-823-0.00 Date MATER WATER WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 016.0°, brown CLAY (A-7-6); trace fine to coarse sa damp. 016 02.0°, hard; damp. 03.0°, hard; damp. 04.0°, stiff brown SILT (A-4b), fittle fine to coarse sand 15.0°, stiff brown CLAY (A-7-6); moist. 15.0°, Stiff to very stiff brown CLAY (A-7-6); moist.</th><th>DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43229 DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43239 Project: SCI-823-0.00 Date Project: SCI-823-0.00 Date MATER WATER WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 016.0°, brown CLAY (A-7-6); trace fine to coarse sa damp. 016 02.0°, hard; damp. 03.0°, hard; damp. 04.0°, stiff brown SILT (A-4b), fittle fine to coarse sand 15.0°, stiff brown CLAY (A-7-6); moist. 15.0°, Stiff to very stiff brown CLAY (A-7-6); moist.</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>0 0 0 78 21</th><th></th><th></th><th></th><th></th><th></th><th>800 100 100 0</th><th>varved;</th><th></th><th></th><th>1d; 0 1 6 38 55</th><th></th><th></th><th>d; moist. 0 1 4 41 54</th><th>C. M. F. Silt II Blows per foot - 0</th><th>pues</th><th>nilled: 01/27/05 to 01/31/05 GRADATION</th><th></th><th></th></th></td<>	DLZ OHIO INC 6121 HUNTLEY FROAD, COLUMBUS, OHIO 43223 DLZ OHIO INC 6121 HUNTLEY FROAD, COLUMBUS, OHIO 43223 Project: SCI-823-0.00 Project: SCI-823-0.00 DBSERVATIONS: Water seepage at: 16.0-18.0, 37-37.5, 68 WAITER WAITER WAITER DBSERVATIONS: Water seepage at: 16.0-18.0, 37-37.5, 68 WAITER Water level at completion: Not Recorded WAITER B.G., hard; damp. B.G., hard; damp. B.G., hard; damp. B.G., hard; damp. B.G., hard; damp. <th>DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43229 DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43239 Project: SCI-823-0.00 Date Project: SCI-823-0.00 Date MATER WATER WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 016.0°, brown CLAY (A-7-6); trace fine to coarse sa damp. 016 02.0°, hard; damp. 03.0°, hard; damp. 04.0°, stiff brown SILT (A-4b), fittle fine to coarse sand 15.0°, stiff brown CLAY (A-7-6); moist. 15.0°, Stiff to very stiff brown CLAY (A-7-6); moist.</th> <th>DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43229 DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43239 Project: SCI-823-0.00 Date Project: SCI-823-0.00 Date MATER WATER WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 016.0°, brown CLAY (A-7-6); trace fine to coarse sa damp. 016 02.0°, hard; damp. 03.0°, hard; damp. 04.0°, stiff brown SILT (A-4b), fittle fine to coarse sand 15.0°, stiff brown CLAY (A-7-6); moist. 15.0°, Stiff to very stiff brown CLAY (A-7-6); moist.</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>0 0 0 78 21</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>800 100 100 0</th> <th>varved;</th> <th></th> <th></th> <th>1d; 0 1 6 38 55</th> <th></th> <th></th> <th>d; moist. 0 1 4 41 54</th> <th>C. M. F. Silt II Blows per foot - 0</th> <th>pues</th> <th>nilled: 01/27/05 to 01/31/05 GRADATION</th> <th></th> <th></th>	DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43229 DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43239 Project: SCI-823-0.00 Date Project: SCI-823-0.00 Date MATER WATER WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 016.0°, brown CLAY (A-7-6); trace fine to coarse sa damp. 016 02.0°, hard; damp. 03.0°, hard; damp. 04.0°, stiff brown SILT (A-4b), fittle fine to coarse sand 15.0°, stiff brown CLAY (A-7-6); moist. 15.0°, Stiff to very stiff brown CLAY (A-7-6); moist.	DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43229 DLZ OHIO INC. • 5121 HUNTLEY FIOAD, COLUMEUS, OHIO 43239 Project: SCI-823-0.00 Date Project: SCI-823-0.00 Date MATER WATER WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 WATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 MATER 005EFIVATIONS: Water seepage at: 16.0-18.0°, 37-37.5°, 68 016.0°, brown CLAY (A-7-6); trace fine to coarse sa damp. 016 02.0°, hard; damp. 03.0°, hard; damp. 04.0°, stiff brown SILT (A-4b), fittle fine to coarse sand 15.0°, stiff brown CLAY (A-7-6); moist. 15.0°, Stiff to very stiff brown CLAY (A-7-6); moist.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0 0 78 21						800 100 100 0	varved;			1d; 0 1 6 38 55			d; moist. 0 1 4 41 54	C. M. F. Silt II Blows per foot - 0	pues	nilled: 01/27/05 to 01/31/05 GRADATION		
					Stiff to very stiff brown CLAY (A-7-6); moist.					@ 16.0'-18.0', stiff, moist to wet.		Very stiff brown SILT (A-4b), little fine to coarse sand; varved; damp to moist.		@ 8.0', hard; damp.	Hard brown SILT CLAY (A-6b), trace fine to coarse sand; damp.		@ 3.0', brown and gray.	Very stiff brown CLAY (A-7-6); trace fine to coarse sand; moist.	DESCRIPTION	Water seepage at: er level at completion:	-1 SCI-823.00 over Slocum Ave Date Drilled:	 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 <i>Project</i>: SCI-823-0.00 	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: Second	549.5 3 4 5 18 1 1 23.5 18 17 4 5 18 10 10 23.5 18 17 4 5 18 12 10 23.5 18 17 4 5 18 1 1 23.5 18 17 4 5 18 10 23.5 18 17 4 5 18 10 23.5 18 17 4 5 18 10 23.5 18 17 4 5 18 10 23.5 18 17 4 5 18 10 559.5 18 10 5 18 10 5 559.5 18 10 5 18 10 10	l	2.0	2.25	2.0	1		3.0	2.25	4.5+		, 5	2.0		2.25	(tst)	<u> </u>	1	10	

STANDARD PENETRATION (N) Job No. 0121-3070.03 + 12 Natural Moisture Content, % -Ο 5 Blows per foot 01/31/05 Ц 79 61 KEIO % 2 38 11!S % 9 GRADATION 0 pues :4 % I ł bns2 .M % 0 0 01/27/05 pues 'O % DLZ OHIO INC. • 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 0 0 % Aggregate Hard brownish gray SILTY CLAY (A-6b), trace fine sand; moist. Date Drilled: Water seepage at: 16.0'-18.0', 37'-37.5', 68' Water level at completion: Not Recorded Hard gray CLAY (A-7-6); damp to moist. Medium dense brown SILT (A-4b); moist. DESCRIPTION Project: SCI-823-0.00 Location: Pier 1 SCI-823.00 over Slocum Ave WATER OBSERVATIONS: Hand Penetro-meter 4.25 4,5+ 4.0 4.5+ 4.5+ 4.25 (tst) Press / Core Sample No. 8 9 4 10 <u>6</u> ₹ өvirQ LOG OF: Boring TR-37 18 8 ĝ ĝ <u>8</u> Client: TranSystems, Inc. 8 (иі) үлөхорая 13 13 7 11 12 r σ o ~ "8 req ewola g θ ß 498.0-523.0-525.0 Elev. Depth (ft) 4 | 45--32.9 55 ģ ដ្ឋ ម្ល S002/82/E | ED-010E-TZTO :3113 [MA 30:0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

	C C	\sum_{i}	С)))))))))))))))))))))))))))))))))))))))))
					DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	40	
Client- TranSV	TranSvstems, Inc.				Project: SCI-823-0.00		Job No. 0121-30/0.03
	Boring TR	TR-37		Location: F	Pie	to to	01/31/05
			Sample No.	Hand Penetro- meter	WATER OBSERVATIONS: Water seepage at: 16.0'-18.0', 37'-37.5', 68' Water level at completion: Not Recorded		VDARD PENETRATIC Moisture Content, %
Depth Elev. (ft) (ft)	əd smojį	(uavose)	orive ress / C	(tst)	DESCRIPTION	X Pddu X Clay X F. S X M % S .D % X Clay X Clay	PL - 11 Blows per foot - 0 10 20 30 40
60 - 495.0	3	-			Hard gray CLAY (A-7-6); damp to moist.		
-62.0					Medium dense light gray SILT (A-4b); contains organic material; damp.		
	, 10 10	ά	19				Q
<u></u> 8	333	φ.	50	;	@ 68.0', loose, wet.	1 2 - 30 57 11	Nom-PJassite
-72.0483.0-	1				Loose gray GRAVEL WITH SAND AND SILT (A-2-4); wet.		
75	0	18	51		·	17 3 - 53 21 6	Ndorf-Plaasite
<u>(</u>							
-78.6	+		55	100 100 - 10 - 10 - 10 - 10 - 10 -	Hard gray SANDSTONE; very fine to fine grained, moderately weathered, argillaceous, thinly bedded to medium bedded, contains argillacous clasts. @ 79.0'-80.2', broken. @ 80.8', low angle fracture.		
85 85	Core F	Rec 117"	ROD 74%				
···· 1 ····		••••			@ 86.0', low angle fracture.		
			_		a contraction of the contraction	-	

STANDARD PENETRATION (N) 0121-3070.03 Ц Natural Moisture Content, % O \bigcirc S Blows per foot 0 8 Job No. \bigcirc 01/31/05 Ч, \bigcirc 0 0 NEID % 11!S % 9 GRADATION pu¤S 'H % \bigcirc bried .M & 01/27/05 pues .0 % 0 DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 ategaregate % . . 0 Date Drilled: weathered, argillaceous, thinly bedded to medium bedded, Water seepage at: 16.0'-18.0', 37'-37.5', 68' Bottom of Boring - 99.0 Not Recorded DESCRIPTION Project: SCI-823-0.00 @ 96.9'-97.4', limestone layer. Pier 1 SCI-823.00 over Slocum Ave Water level at completion: contains argiliacous clasts. @ 94.4-94.7', calcareous. @ 91.9'-92.0', calcareous. WATER OBSERVATIONS: Hand Penetro-meter (tst) Location: RQD R-2 99% Press / Care Sample No. θv'nQ Hec 119" LOG OF: Boring TR-37 client: TranSystems, Inc. (иі) үлөгорэя Core 120" "8 lows per 6 156.0-465.0 Elev. (ft) Depth (ft) 9.66 115 105-110 56 9 ġ

E0-0408-1210 19113 [3/28/2002 8:00 FM]

 \bigcirc \bigcirc \bigcirc

Job No. 0121-3070.03	CD/01		STANDARD PENETRATION (N) Natural Moisture Content, % - • PL • • • • • • •	Blows per foot - 0 10 20 30 40		0	•		-0-		-0	~-0-	-0-	•		
100	3						٩				35			27		
1,				90 % 115 %	<u>.</u>		29 7				83			72		
1	입	GRADATION	pues			:					<u></u> ର	<u> </u>		-		
		¥₫	pues		 						;			ł		·
4	อไ	- B	pues				0	···			<u>. </u>			0		
	02/09/02		ອາະຍົອມຍິ				0				0			0		
SCI-823-0.00	A anathra: Rear Abutment SCI-823.00 over Slocum Ave Date Drilled:		er tevel at completion:	DESCRIPTION	Very stiff CLAY (A-7-6), brown , trace fine sand; damp.				Stiff brown SiLT (A-4b), little clay, trace fine to coarse sand; moist.						Stiff brown SILT AND CLAY (A-6a); little fine sand; contains silt laminae; moist.	-
	Booting. B		Hand Penetro- meter	(tsf)	2.5	3.25	3.5	5.0	1.5	<u>ທີ່</u> .	1.25	1.25	1.5	1.5	1.5	1.0
	F	- ble		∖ ssar9	ļ				<u> </u>			·				12
	ļ	Sample		Drive	-	2	en 	4	വ	<u>ں</u>	~	س	- - Тапана - Тапана	5		
s. Inc.		-н - н	(uj) A	өхоред		9 18	1	3 1 3 1 3	5		9 18	6 18	8	9 16	5 18	5 18
TranSvstems, Inc.		Boring		od smole	MON MON	3 72	4 6 11	4 6	5.0	n n	2 3	5	2 3	4 8	530.0 2 4	6 4
Client, Trans				Depth Elev. (ft) (ft)	-0.3 - 554.7	<u>, r</u> , ,	- ا ت	- <u>-</u>	-10.0-545.0-	<u>↓ · · · ·</u> ·	15	1 { 1	50	1 1 1	ین بی بی بی بی بی بی بی بی بی بی بی بی بی	· · · · ·

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

0101 0020 03	p No.	c0/01/20	STANDARD PENETRATION (N) Natural Moisture Content, % -	+ - -			Ndor! Plakshić			8	- O	-0
				₽ つ % ₩S %	269 38		20 10			332	······	
		10N 10N	pues	5 'H %	ى		<u>.</u>	<u> </u>		· · ·		
		15 to GRADATION	pues	· W %	1		1			<u> </u>		
9		<u>a</u> lg		5.0 %	<u> </u>		0 21			 		· · · · · · · · · · · · · · · · · · ·
8-004		02/09/05	ເຣດີສຸເອ	66¥ %	<u> </u>			1			<u></u>	
DLZ OHIO INC. • 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 • (614)888-0040		:I-823.00 over Slocum Ave Date Drilled:	WATEH OBSERVATIONS: Water seepage at: 10.0'-21.5' 33.0'-38.5', 65.0'-80.0' Water level at completion: 9.8' (Prior to coring) 7.3' *including drilling water)	DESCRIPTION	Stiff brown SILT AND CLAY (A-6a), little fine sand; moist.	Medium dense gray GRAVEL WITH SAND AND SILT (A-2-4); moist.		Very stiff gray SILTY CLAY (A-6b), little fine sand; damp to moist.				Very stiff gray SILT (A-4b), little fine sand, little silty clay; moist.
		Location: Re	Hand Penetro- meter	(tst)	0.1				3.5	3.0	, ,	т, т,
			ore le) / ssəı	<u></u>							<u></u>
			Sample No.	əνµ(⊐ <u>₽</u>		4			<u>0</u>		
		o, IIIC. TR-38	(uj) /	(Javosa)	R 8		18		18	18	18	38
		OF: Boring TI	ر و"	əd smol	33 B		4 7 11		7 12 14	10 13 17	2 0 2	7 9 10
		BOI		Elev. (ft)	525.0	522.0-		517.0-	_			-200.0-
		LOG OF:		Depth E (ft)	30 - 2		35		40	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	22	

 \bigcirc

000000000000000000000000000000000000000		Job No. 0121-3070.03	to 02/10/05	TION	STANDARD PENETRATI Natural Moisture Content, %	び 書 コン PL F					4 45 Non-Hildssite						
0				GRADATION	pue	S W %					1		1				
0	64		02/09/05	ତି		1664 %					0 1		50 19				
	DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040		I-823.00 over Slocum Ave Date Drilled:	WATER	Hand Penetro- Meter	(tst) DESCRIPTION	2.5 Medium dense gray COARSE AND FINE SAND (A-3a), some silt, little clay; moist.		@ 65.0', wet.	Loose gray SANDY SILT (A-4a); wet.		Very dense gray GRAVEL WITH SAND (A-1-b); wet.			Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, arenaceous, thinly bedded to thickly bedded.	@ 80.0'-80.2',84.0'-84.2', broken zones.	@ 85.9',86.2',86.7', low angle clay filled fractures.
			æ	Sample	No.	Drive	19		50		3		53 		RQD 90%		RQD 80%
Ċ		, Inc.	TR-38		(ui) Ki	элорэн	18		18		15		13		Rec 60"		Rec 60"
\sum		stems	Boring		"ð 190	d swola	4 8 9		6 6 7		wон 5		9 20 50/3		Core 60"		Core 60"
		client: TranSystems, Inc.	LOG OF: Bo				60.0 495.0-	1 1 1	8		02		بر بر لا	1 1	6 5002/82/E 1		710 : 54113