

STRUC	TURA	LE	NGI	NEE	RI	IG
	MAY	01	200	6		
	gm RZ		AW		JEN	
路目	DAG		JCR		FIL	

SCI-823-0.00 PID No. 19415

S.R. 823 OVER SHUMWAY HOLLOW ROAD

STRUCTURE TYPE STUDY SUBMITTAL

Prepared for: Ohio Department of Transportation District 9 650 Eastern Ave. Chillicothe, Ohio 45601

APRIL 28, 2006

Prepared by:

TABLE OF CONTENTS

Table of Contents

1. Introduction	. 1
2. Design Criteria	. 1
3. Subsurface Conditions and Foundation Recommendation	. 1
4. Roadway	. 2
5. Proposed Structure Configurations	. 2-4
6. Recommendations	. 5
APPENDIX ACost Comparison Summary (2 Alternatives)	8 Sheets
 APPENDIX B Preliminary Site Plan – Alternative 2 - Preferred (Sheet 1 of 2) Typical Transverse Section (Sheet 2 of 2) 	2 Sheets
 APPENDIX C Preliminary Vertical Clearance Calculations 	4 Sheets
 APPENDIX D Preliminary Site Plan – Alternative 1 (Sheet 1 of 1) 	1 Sheets

APPENDIX E

• Preliminary Geotechnical Report and MSE Wall Evaluation

1. Introduction

TranSystems Corporation is providing engineering services to the Ohio Department of Transportation for the design of new left and right overpass structures that will carry the proposed S.R. 823 bypass over relocated Shumway Hollow Road. As requested by the Scope of Services, a Structure Type Study report is to be submitted before any plan development. The purpose of this report is to investigate various span arrangements and superstructure and substructure types in order to determine the most appropriate and economical structure type that will meet the project requirements. An initial Structure Type Study report dated 7/15/2005 was submitted to the Department and comments, dated 8/29/2005, were in turn received by Transystems Corporation. However, since these dates, the entire project has experienced a change in profile – the original project profile presented in the Preferred Alternative Verification Report (PAVR) submitted July 2005 has been altered and the revised profile has been approved by the Department. The revised profiles now have S.R. 823 crossing over Shumway Hollow Road as opposed to the reverse in the July 2005 PAVR. This follow-up Structure Type Study presents a reevaluation of the new structure arrangement at this location incorporating the 9/1/2005 ODOT comments as applicable. As a result, two (2) alternatives for construction of the proposed S.R. 823 Mainline over Shumway Hollow Road are evaluated in this study and are designated as Alternatives 1 and 2. Each of these alternatives is evaluated with regard to estimated construction cost, projected maintenance costs, horizontal and vertical clearances, constructability and maintenance of traffic. Discussion of these alternatives is presented later in this report.

2. Design Criteria

The proposed structure will be designed according to the most current version of the Ohio Department of Transportation Bridge Design Manual and the 2002 AASHTO Standard Specifications for Highway Bridges, 17th Edition. Horizontal clearances (clear zone width and horizontal sight distance) are based on the Ohio Department of Transportation Location and Design Manual, Volume One – Roadway Design.

3. Subsurface Conditions and Foundation Recommendation

DLZ Ohio, Inc. performed the subsurface exploration for the proposed bridge and prepared the Preliminary Bridge Foundation Recommendations which were presented in Section 3 and Appendix E of the original 7/15/2005 Structure Type Study report. The borings were drilled to coincide with the proposed span arrangement that carried Shumway Hollow Road over S.R. 823 and are therefore not under either of the revised substructures locations. The SSI found rock to be uniform within the three borings drilled. The soil borings are ongoing through Step 8 of the PDP and the borings at these structures will be re-evaluated before the TS&L submittal. Updated boring logs for the three test borings (TR-24, TR-25 and TR-26) and preliminary MSE wall evaluations - performed by DLZ Ohio, Inc. – accompany this modified/updated Structure Type Study Report. The preliminary evaluations reveal that MSE walls can be used at the rear and forward abutment locations as long as the naturally occurring soils beneath the proposed MSE walls are over excavated 7'-0" and replaced with compacted, granular fill. DLZ also recommends a wire faced MSE wall built in stages to tolerate anticipated settlements and recommends the use of wick drains to reduce the time for primary consolidation. Conversations with DLZ Ohio, Inc. indicate that regardless of whether a single span or three span structure was being evaluated, the construction costs for the wick drains are similar and thus not included in the structure estimates of this report. The wick drain costs will be included in the

roadway costs for future submittals. Refer to the preliminary MSE wall evaluation report for more details and information.

4. Roadway

The purpose of this project is to construct a new bypass state route around the town of Portsmouth, Ohio. The proposed alignment will carry two lanes of traffic, 15 plus miles in either direction, from an interchange with US 52 just east of Portsmouth to another interchange with US 23, located north of Portsmouth in Valley Township.

Both the left and right structures are similar and will consist of two 12'-0" travel lanes with 6'-0" median shoulders and 12'-0" outside shoulders. Including a 1'-6" inside median parapet and a 1'-6" 2 outside straight face deflector parapet yields a structure deck width of 45'-0" out to out.

The distance from the centerline of construction of SR 823 to the near edge of both the left and right structures is constant at 3'-6". Horizontal and vertical sight distances are in accordance with the design standards, for all alternatives considered.

Shumway Hollow Road will be relocated to the proposed horizontal and vertical alignment shown. Below the structure, Shumway Hollow Road will have three 12'-0" travel lanes with 8'-0" paved shoulders.

Vertical and Horizontal Clearances – The 17'-O" preferred vertical clearance will be provided for each structure alternative considered. The Shumway Hollow Road profile will be adjusted for the TS&L submittal to be within 3" of the preferred clearance for the selected structure. In accordance with the ODOT L&D manual, Volume 1 a minimum horizontal clear zone width of 30'-O" from edge of traveled way to face of obstruction will be provided for the twin structures at this location.

Pavement Drainage - The collection of storm water runoff will be addressed off of the bridge, thus scuppers will not be required. The type of drainage system will be investigated as part of the preliminary design.

Utilities - No utilities will be placed on the bridge. However, lighting and ITS conduits will be provided as necessary. There are no utility relocations at the bridge site known at this point in time.

Maintenance of Traffic – Mainline SR 823 and Shumway Hollow are both new construction and maintenance is not a concern.

5. Proposed Structure Configurations

Alignment & Profile: The proposed horizontal geometry of SR 823 is along a tangent for the entire length of both the left and right structures. The cross section is a normal crown. The proposed mainline profile grade line is located on the inside edge of pavement for both bridges and at a +1.5% grade. The horizontal and vertical geometry for all alternatives considered are the same. Embankment slopes will be a maximum of 2:1 in order to minimize right-of-way impacts. Shumway Hollow Road is on a tangent horizontal alignment below the proposed structures with a spiral curve starting 20' north of the right structure. The profile of Shumway

Hollow Road is in a 300' vertical curve with grades of -3.30% and -1.00%, PVI Sta. 29+00, Elev. = 669.86.

Structure Types: As per the Scope of Services, we investigated several bridge types and alternatives as part of this type study. Various span configurations were investigated and were refined to the layouts discussed below. Considering the preferred clearance to the clear zones on either side of Shumway Hollow Road a single span bridge was selected as the most economical. Three span structure alternatives were also investigated and dismissed. The 3-span arrangements provided for poorly balanced loading conditions to maintain clearances as well as being cost prohibitive in comparison to other options. Preliminary cost analysis also indicates that an option with MSE walls at the clear zones is cheaper than a single span spill through structure. The different alternatives discussed below modify the type of superstructure on the single span MSE supported embankments.

A preliminary bridge construction cost has been prepared for the two (2) Alternatives (See Appendix A). The unit prices were based on ODOT's Summary of Contracts Awarded Year 2004 and were inflated 3.5% each year to the 2008 sale date, unless different unit prices were recommended by ODOT in August 2005. These estimates were used as a guide to select the most economical alternative. Maintenance costs such as painting, overlays and re-decking were included for each Alternative.

The structure types that were considered are outlined in the Structure Type Alternative Table below:

STRUCTURE TYPE ALTERNATIVE TABLE											
Structure Type Alternative	1	2									
Superstructure Type Description	Straight, 56"web, steel plate girders A709 Grade 50W	Prestressed Concrete Girders 72" Modified AASHTO Type 4 beams									
Proposed Beam Spacing	4 Spaces @ 9'-6"	4 Spaces @ 9'-6"									
No. of Spans	1 (107')	1 (107')									
Abutment Type	Stub Type abutments on MSE wall supported embankments (Semi-Integral)	Stub Type abutments on MSE wall supported embankments (Semi-Integral)									
No. of Piers	None	None									
Pier Type	N/A	N/A									
Substructure Orientation	0°00'00"	0°00'00"									
Approximate Bridge Length	107'	107'									
<u>Approximate</u> <u>Structure Depth</u> Slab Haunch Beam Total	8.75" 2" 59.0" 69.75" (5.8125')	8.5" 2" 72.0" 82.5" (6.875')									

Alternatives Discussion:

<u>Alternative 1</u>

This alternative is comprised of a single span structure with a span length of 107'-0" from centerline bearings at abutments. The abutments and pier are oriented with a 0°00'00" skew. Embankment slopes are supported by MSE walls approximately 20' in height at both abutments. The MSE walls are set at the clear zones of 30'-0" on either side of Shumway Hollow Road. A ditch will be required in front of both MSE walls to convey the roadway drainage.

The abutments will be semi-integral type supported on H-piles as they are located in new embankment fill. The piles shall be HP14x73 with a design capacity of 90-tons per pile, driven to refusal on bedrock. The details of the abutments will follow ODOT Standard Construction drawings. Piles will need to be sleeved through the MSE wall embankment zone in accordance with the MSE wall Special Provisions. Due to anticipated settlements (see Appendix E) wire faced MSE walls, built in stages, are recommended, and to reduce primary consolidation time, wick drains should be used within the embankment area.

The preliminary design of this alternative consists of 5 - 56" web Grade 50W plate girders, spaced at 9'-6" with 3'-6" deck overhangs. The design loading applied was HS-25 (Case I fatigue) with Alternate Military Loading and a future wearing surface of 60 psf. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 45'-0". Deck thickness, including a 1" monolithic wearing surface, is 8 $\frac{3}{4}$ ".

The initial bridge construction cost for Alternative 1 is estimated to be \$2,040,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$923,000, resulting in a total estimated ownership cost of \$2,963,000 in year 2008 dollars.

Alternative 2

Alternative 2 is similar to Alternative 1 except that the superstructures for the left and right structures consist of 5 - 72" Type 4 Modified prestressed beams, spaced at 9'-6" with 3'-6" overhangs. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 45'-0". Deck thickness, including a 1" monolithic wearing surface, is 8 1/2". Standard beam strengths of 5000psi release and 7000psi final were used for this alternative.

The initial bridge construction cost for Alternative 2 is estimated to be \$2,310,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$491,000, resulting in a total estimated ownership cost of \$2,801,000 in year 2008 dollars.

6. Recommendations:

Based upon the above information and discussions, we recommend for both the left and right structures **Structure Type Alternative 2**, which consists of a single span with 72" AASHTO Type 4 Modified prestressed beams supported on semi-integral abutments, behind MSE walls. (See Appendix B for the Site Plan and Structure Details).

Our recommendation for Alternative 2 is based on the following items:

- A. This Alternative appears to be economical when considering the construction costs.
- B. Lowest life cycle costs.
- C. Lowest total ownership costs.

APPENDIX A Cost Comparison Summary

.

SCI-823-0.00 - PORTSMOUTH BYPASS

S.R. 823 over Shumway Hollow Road L&R STRUCTURE TYPE STUDY

				SIRU	CIURE TYPE STU	DY		:			
			B Checke	by: PJP rd: JRC		Date: Date:	4/17/2006 4/18/2006				
	TIVE COST SUMMARY								- / .		
Alternative No.	Span Arrangement No. Spans Lengths	Total Span Length (ft.)	Framing Alternative	Proposed Stringer Section	Subtotal Superstructure Cost	Subtotal Substructure Cost	Structure Incidental Cost (16%)	Structure Contingency Cost (20%)	Total Alternative Const. Cost	Life Cycle Maintenance Cost	Total Relative Ownership Cost
1	1 107'	107.00	5 Steel Girders /per BRIDGE	56" Web Grade 50W	\$710,000	\$757,000	\$234,700	\$340,300	\$2,040,000	\$923,000	\$2,963,000
2	1 107'	107.00	5 Prestressed Concrete Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$776,000	\$883,000	\$265,400	\$384,900	\$2,310,000	\$491,000	\$2,801,000
								· · · · · · · · · · · · · · · · · · ·			,,

NOTES:

Π \square

Structure incidental cost allowance includes provision for structure excavation, porous backfill, sealing of concrete surfaces, 1. structural steel painting, bearings, and crushed aggregate slope protection costs.

2. Estimated construction cost does not include existing structure removal (if any), which should be quantified seperately, if required.

Cost Summary

SCI-823-0.00 - PORTSMOUTH BYPASS

						STRU		.R. 823 over S	Shumway Ho	UTH BYPAS llow Road L&l	र	CTURE						1
					B Checke	y: PJP d: JRC				Date: 4/17/2006 Date: 4/18/2006								1
SUPERST	RUCTURE																	
Alternative No.	Span Arrang No. Spans		Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost		ming native		pposed r Section	Structural Steel Weight (Pounds)	Steel Girder Cost	Subtotal Superstructure Cost	Construction Complexity Factor	Subtotal Superstructure Cost
1	1	107'	107.00	110	364	\$214,500	\$91,200	\$99,000	\$0	5 Steel Girder	s /per BRIDGE	56" W	eb Grade 50W	262150	\$305,183	\$710,000	0%	\$710,000
						*												
					1 Martin Line 1 Martin				OCT CURROR									The same and the same subserved
								<u> </u>	UST SUPPOR	T CALCULATION	15							
and the Barriel	Sectional Area:		Parapet				Structural Stee											
	No. Parapets 1	Individual <u>Area (sq. ft.)</u> 4.26	Area (<u>sq. ft.)</u> 4.26				Unit Costs (\$/It	<u>.):</u>	Cost <u>Ratio</u>	Year <u>2005</u>	Annual Escalation	Year <u>2008</u>						
Slab:	Parapets 1	4.26	4.26 Slab	Haunch &	Total Concrete Area		Rolled Beams - G Level 4 Plate Gird level 5 Plate Gird	lers - Grade 50W	n/a n/a n/a	\$0.74 \$1.05 \$1.20	3.5% 3.5% 3.5%	\$0.85 \$1.16 \$1.38	Straight Girders Curved Girders					
	Left Bridge Right Bridge	T (ft.) W (ft.) 0.73 45.00 0.73 45.00	<u>Area</u> 32.8 32.8	Overhang Area 3.3 3.3	<u>(sq. ft.)</u> 44.6 44.6													

Note: Deck width is out to out 10% of deck area allowed for haunches and overhangs.

QC/QA Concrete, Class QSC2

	01010, 01000 0			Construction Comp	Diexity Factor						
Unit Cost (\$	5/cu. yd):			Percent of Superst	1	=	0% Due to Deck for	rming, Screed and Varying Girder Space	20		
	Year	Annual	Year					ining, object and varying circle opaci			
	<u>2004</u>	Escalation	<u>2008</u>								
Deck	\$491.00	3.5%	\$563.00								
Parapets	\$615.00	3.5%	\$706.00								
Weighted Ave	erage =		\$590.00	Reinforced Concret	te Approach Sla	bs (T=17")		Expansion Joints			
	apet and slab p	ercentages		Unit Cost (\$/sq. yd.				Unit Costs (\$/Lin.Ft.):	Cost	Year	Annu
of total concre	ete area			Length = 30 f		Width =	90 ft		Ratio		Escala
	A starting the second			Area = 600 s	sq. yd.				Itotio	2001	Ecocard
								Strip Seal Expansion Joints	1.00	\$250	3.5%
	ad Dalafanala	- Otrail			Year	Annual	Year				
and the second second second second	ed Reinforcin	g Steel			<u>2004</u>	Escalation	2008				
Unit Cost (\$		States and the states of the		Approach							
Assume 285 I	lbs of reinforcing	g steel per cubic yard o	f deck concrete	Slabs	\$144.00	3.5%	\$165.00				
	Year	Annual	Year	Approach Roadway	,						
	2004	Escalation	2008			Year	Annual	Year			
Deck						2005	Escalation	2008			
Reinforcing	\$0.77	3.5%	\$0.88	Embankment fill	0.00 cu.yd.		3.5%	\$4.43			C. Lini
				Roadway incl. base	0.00 sq.yd.	\$26.00	3.5%	\$28.83			
				Barrier (single faced)	0 ft.	\$50.00	3.5%	\$55.44			
				Barrier (dble faced)	0 ft.	\$80.00	3.5%	\$88.70	Tour and the set		

Const

tion Comple

			All Street and		A Contraction of the	
		AN AN ACT				40.510
						Anna
						in the
		And the Day				
	he a la sa					
	Service State					
				EN CASE		
leur	Year					
nual <u>lation</u>	<u>2008</u>					
5%	\$318					
CERCE.						
Contraction of the	And Annual Contractor and Annual State	the second s	THORN DESCRIPTION OF THE		and a serie showing	STATISTICS.

SCI-822-0 00 - DODTSMOUTH BYDASS

								PORTSMOUTH							
					STRUCTURE	E TYPE STUD	Y - STEEL PI	humway Hollow	ROAD L&R ERNATIVE 1 - SUB	STRUCTURE		1.			
				Chec	By: PJP ked: JRC					e: 4/17/2006 e: 4/18/2006					
SUBSTRU	CTURE														
Alternative No.	Span / No. Span	Arrangement s Lengths	Frar Alteri	ming native	Proposed Stringer Secti		Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Wall Cost	Additional Crane Cost		Subtotal Substructure Cost
1	1	107'	5 Steel Girders	s /per BRIDGE	56" Web Grade	50W	\$0	\$0	\$155,500	\$25,500	\$115,200	\$460,900	\$0		\$757,000
							COST SUP	PORT CALCULATI	ONS						
Pier QC/QA C		QSC1 Cost: (Spre	ad Footing)					Pile Foundatio	n Unit Cost (\$/ft.):	HF	9 14X73 Piles, Furnis	hed & Driven			
<u>Component</u> Cap Stem	Volume <u>(cu. yd.)</u> 0 0	Year <u>2004</u> \$421.00	Annual <u>Escalation</u> 3.5%	Year <u>2008</u> \$483.00	Total <u>Cost</u> \$0				Number of Piles			Total Pile <u>Length</u>			
Footings Total	0 0 0	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$0 \$0 				64	SEE QUANTITY	CALCULATIONS	2,880			
<u>Pier QC/QA C</u>	oncrete, Class	QSC1 Cost: (Drille	ed Shaft)					<u>Pile Foundatic</u>	<u>n Unit Cost (\$/ft.):</u>	Year 2005 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year <u>2008</u>		p Trues	
<u>Component</u> Cap Columns Footings	Volume (<u>cu. yd.)</u> 0 0 0	Year <u>2004</u> \$421.00 \$421.00 \$421.00	Annual <u>Escalation</u> 3.5% 3.5% 3.5%	Year <u>2008</u> \$483.00 \$483.00 \$483.00	Total <u>Cost</u> \$0 \$0			<u>Shaft Foundat</u>	Furnished Driven Total i <u>on Unit Cost (\$/ft.):</u>	\$26.47 \$9.62 36'	3.5% 3.5% ' Drilled Shaft	\$29.30 <u>\$10.70</u> \$40.00			
Total Abutment QC	/QA Concrete,	Class QSC1 Cost:	0.070	φ 4 03.00	\$0 \$0				Number of Shafts				Total Shaft Length		
<u>Component</u> Abutment	Volume (cu. yd.)	Year <u>2004</u>	Annual Escalation	Year <u>2008</u>	Total <u>Cost</u>			Alt. 1 Shaft Foundat	0 on Unit Cost (\$/ft.):		CALCULATIONS		0		
Wingwalls	280 42	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$135,200 \$20,300			Unit Cost	Escalation	2008		Temporary S Unit Costs (\$	horing and Suppo	<u>ort</u>	
	Note: 15%	of abutment volume	allowed for wingwall	S.				\$300.00 Cost of Shafts:	4.5% \$-	\$358.00			Temp. Shoring Area (sq. ft.)	Temp. Girder Support (lump sum)	
												Alt. 1	0	\$ -	
Epoxy Coated	Reinforcing St	aal										Temporary	Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year <u>2008</u>
Unit Cost (\$/Ib Assume 125 lbs): of reinforcing stee	el per cubic yard of pie per cubic yard of abu	er concrete. tment concrete.			<u>t Cost (\$/sq. ft</u> otal Area <u>(sq. ft.)</u>	:.): Year 2005 <u>Unit Cost</u>		Year			Shoring	\$22.50 \$32.00	3.5% 3.5%	\$25.80 \$36.70
	Year <u>2004</u>	Annual <u>Escalation</u>	Year 2008			8,320	\$50.00	Escalation 3.5%	<u>2008</u> \$55.40		Additional Crar	<u>ne Cost</u>			
Pier Abutment	\$0.77 \$0.77	3.5% 3.5%	\$0.88 \$0.88								\$				

SCI-823-0.00 - PORTSMOUTH BYPASS

S.R. 823 over Shumway Hollow Road L&R STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 1 - QUANTITY CALCULATIONS

Total Volume

Volume

0

0

By: PJP Checked: JRC

 Volume
 Width
 Depth
 Length

 0
 0
 0
 0.00

0

Pier Quantities Stem

Date:	4/17/2006
Date:	4/18/2006

	Party of the second second second		A CONTRACTOR OF		and the second se	Pile Qua	titles					
Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	16	684.5	640.0	45.0	
Pier 1	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 2	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 3	0	0	0	0	140	0	1	0	0	0	0.0	The second s
Pier 4	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 5	0	0	0	0	140	0	1	0	0	0	0.0	because of the second
Pier 6	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 7	0	0	0	0	140	0	1	0	0	0	0.0	
wd. Abut.	0	0	0	0	140		1	16	685	640		Contract of the second s
Total							· · · · ·	32	COT(5)	040	40.0	
			and the local data and the		L	L	Qty x 2 (L/R)	64	L			1440
								04				2880

and the second second				The second	(Hereite Hereite)	a sales	Abutm	ent Q	uantities		Gia find the	(Constant)	ALC: STATE	Sale Care	100 M 100 M 100 M	No Land and the state
Abut Location	Length			kwall				Beam	Seat				Footin	a	OPACE/CHEAN	
100	(feet)	Width	Depth	Area	Volume	Width	Height	Area		Volume	Width	Depth			Volume	Total Volume
Rear Abut	45	3	6.5	19.50	878	3	1.5	4.50		203		3	18		810	
Fwd. Abut	45	3	6.5	19.50	878	3	1.5			203	-	2				
Total (Cu.Ft.)			1		1755			1.00				3	18	1	810	
Total (Cu.Yd.)										405					1620	3780
······		-	<u></u>		65			N		15					60	140
			Qty x 2 (L/R)	130					30					120	280

Abut Location	9	W	all	
- inde Ebbation	Height	Length	Area	Volume
Rear Abut	24	125	3000.0	
RA Wing (L)	5	40	580.0	
RA Wing (R)	5	40	580.0	
Fwd Abut	24	125	3000.0	
FA Wing (L)	5	40	580.0	
FA Wing (R)	5	40	580.0	
Total (Sq.Ft.)			8320	

Pier 1 (Spr Ftg) Pier 2 Pier 3 Pier 4 Pier 5 Pier 6 Pier 7 Total (Cu.Ft.) Total (Cu.Yd.)

 Dier Location
 Length
 Cap
 Stem

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Qty x 2 (L/R)

0

		Conception She			36" Dr	illed Sha	fts for Piers		A STORES			
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 1	0	0	0	0	0	0	1	0	0	0	0.0	the second se
Pier 2	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	the second s
Pier 4	0	0	. 0	0	0	0	1	0	0	0	0.0	and the second se
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	the second s
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	and the second se
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0	And the second
Fwd. Abut.	0	10	0	0	0	0	1	0	0	0		
Total								0			0.0	0

AS ADDA SPACE	Superstruct	ure Steel	Quantities	She was the
Location	Wt.of girder (lb)/ft		Span Length	Total Weight
Span 1	245	10	107.00	262150
Span 2	0	0	0	0
Span 3	0	0	0	0
Span 4	0	0	0	0
Span 5	0	0	0	0
Span 6	0	0	0	0
Span 7	0	0	0	0
Span 8	0	0	0	0
Total				262150

			STRUC	TURE TYPE STU	S.R. 823 o	.00 - PORTSN over Shumway H SED CONCRETE	Iollow Road	_&R		1						
				B Checke	y: PJP d: JRC					ate: 4/17/2006 ate: 4/18/2006						
SUPERSTR	UCTURE															
Alternative No.	Span Arrangement No. Spans Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost	Fran Alterr	ning native	Prop Stringer		Prestressed Concrete Cost	Subtotal Superstructure Cost	Construction Complexity Factor	Subtotal Superstructure Cost
2	1 107'	107	110	355	\$209,900	\$89,100	\$99,000	\$0	5 Prestressed Co /per BR		Modified AASH	TO Type 4 (72")	\$378,060	\$776,000	0%	\$776,000
				2.77.05 (
							COST SI	IPPORT CALCUL	ATIONS							
F Slab: Le Rig Note: De	ectional Area: No. Area (sq. ft.) Parapets 1 4.26 Parapets 1 4.26 Parapets 1 4.26 eff Bridge 0.71 45.00 pht Bridge 0.71 45.00 eck width is out to out % of deck area allowed for haunches	31.9	Haunch & <u>Overhang Area</u> 3.2 3.2 3.2	Total Concrete Area (sq. ft.) 43.6 43.6		Percent of Sup	/ Beams agms hragms Beams (72") complexity Facto	= 0%		Year 2008 \$2,070 ea. \$1,380 ea. \$1,040 ea. \$330 ea.	No. Required 0 24 1070 ving Girder Spaces	\$0 \$0 \$24,960 \$353,100 \$378,060				
Unit Cost (\$/cu Deck \$ Parapets \$ Weighted Averag Based on parape of total concrete a Epoxy Coated Unit Cost (\$//b)	Year Annual 2004 Escalation 6491.00 3.5% 6615.00 3.5% ge = at and slab percentages area area	Year 2008 \$563.00 \$706.00 \$591.00				Unit Cost (\$/sq Length = 3 Area = 60 Approach Slabs Expansion Joir Unit Costs (\$/L Strip Seal Expans	<u>. yd.):</u> 00 ft. 00 sq. yd. <u>Year</u> <u>2004</u> \$144.00 <u>hts</u> in.Ft.):	Width = 90 Annual <u>Escalation</u> 3.5% Cost <u>Ratio</u> 1.00	ft Year 2008 \$165.00 Year 2003 \$250.00	Annual Escalation 3.5%	Year <u>2008</u> \$318.07					

Assume 285 lbs of reinforcing steel per cubic yard of deck concrete

Year	Annual	Year	
2008	Escalation	2004	
		A Handle Market	Deck Reinforcing
\$0.88	3.5%	\$0.77	Reinforcing
	0.070	+0.11 Y	i toning

		Year	Annual	Year
		2005	Escalation	2008
Embankment fill	0.00 cu.yd.	\$4.00	3.5%	\$4.43
Roadway incl. base	0.00 sq.yd.	\$26.00	3.5%	\$28.83
Barrier (single faced)	0 ft.	\$50.00	3.5%	\$55.44
Barrier (dble faced)	0 ft.	\$80.00	3.5%	\$88.70

SCI-823-0.00 - PORTSMOUTH BYPASS

S.R. 823 over Shumway Hollow Road L&R

					STRUCTURE TYPE STUDY - PR	RESTRESSED C	ONCRETE GIRDE	R ALTERNATIVE	2 - SUBSTRU	CTURE				
					By: PJP ked: JRC				e: 4/17/2006 e: 4/18/2006					
UBSTRU	CTURE													
lternative No.	Span A No. Spans	rrangement Lengths		ming mative	Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Wall Cost	Additional Crane Cost		Subtota Substruct Cost
2	1	107'		Concrete Girders BRIDGE	Modified AASHTO Type 4 (72")	\$0	\$0	\$167,600	\$27,500	\$152,000	\$460,900	\$75,000		\$883,00
						COST SUPP	ORT CALCULATIC	ONS						
er QC/QA C		QSC1 Cost: (Spr	ad Footing)		Alt 1		Pile Foundatio	on Unit Cost (\$/ft.):	HF	P 14x73 Piles, Furnist	hed & Driven			
<u>omponent</u> ap	Volume (<u>cu. yd.)</u> 0	Year <u>2004</u> \$421.00	Annual <u>Escalation</u> 3.5%	Year <u>2008</u> \$483.00	Total <u>Cost</u> \$0			Number of Piles			Total Pile <u>Length</u>			
tem ootings otal	0 0 0	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$0 \$0 \$0		.	80	SEE QUANTITY	CALCULATIONS	3,800			
er QC/QA C	oncrete, Class	QSC1 Cost: (Drill	ed Shaft)				Pile Foundatio	on Unit Cost (\$/ft.):	Year 2005 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year <u>2008</u>			
omponent ip olumns	Volume <u>(cu. yd.)</u> 0 0	Year <u>2004</u> \$421.00 \$421.00	Annual <u>Escalation</u> 3.5% 3.5%	Year <u>2008</u> \$483.00 \$483.00	Alt 1 Total <u>Cost</u> \$0 \$0		<u>Shaft Foundat</u>	Furnished Driven Total tion Unit Cost (\$/ft.	\$26.47 \$9.62 <u>):</u> 36	3.5% 3.5% " Drilled Shaft	\$29.30 <u>\$10.70</u> \$40.00			
ootings otal butment QC /	0	\$421.00 <u>Class QSC1 Cost</u> :	3.5%	\$483.00	<u>\$0</u> \$0			Number of Shafts				Total Shaft Length		
omponent outment ingwalls	Volume <u>(cu. yd.)</u> 302 45	Year <u>2004</u> \$421.00	Annual <u>Escalation</u> 3.5%	Year <u>2008</u> \$483.00	Total <u>Cost</u> \$145,900		Alt. 1a <u>Shaft Foundat</u> <u>Unit Cost</u>	0 <u>ion Unit Cost (\$/ft.</u> <u>Escalation</u>		CALCULATIONS	Temporary \$	0 Shoring and Supp	ort	
ingwand -		\$421.00 of abutment volume	3.5% allowed for wingwa	\$483.00 lls.	\$21,700		\$300.00 Cost of Shafts:	4.5% \$-	\$358.00		<u>Unit Costs (</u> :		Temp. Girder Support (lump sum)	
											Alt. 1a	0	\$ -	
ory Coated	Reinforcing St	aal									Temporary	Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year 2008
nit Cost (\$/Ib sume 125 lbs	<u>):</u> of reinforcing stee	l per cubic yard of p per cubic yard of ab	ier concrete.		MSE Abutment Unit Cost (\$/sq. Total Area	Year 2005	Annual	Year			Shoring Cofferdam	\$22.50 \$32.00	3.5% 3.5%	\$25.80 \$36.70
	Year	Annual	Year		<u>(sq. ft.)</u> Alt. 2 8,320	<u>Unit Cost</u> \$50.00	Escalation 3.5%	<u>2008</u> \$55.40						\$00.70
ər	<u>2004</u> \$0.77	Escalation 3.5%	<u>2008</u>				0.07	000.40		Additional Cran	ne Cost			
utment	\$0.77	3.5% 3.5%	\$0.88 \$0.88							\$ 75,000				

SCI-823-0.00 - PORTSMOUTH BYPASS

S.R. 823 over Shumway Hollow Road L&R STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 2 - QUANTITY CALCULATIONS

By: PJP Checked: JRC

Date: 4/17/2006 Date: 4/18/2006

		(managering and a straight		A DESCRIPTION OF	AFTER STATISTICS	File Qu	antities		历史的变形的	Sec. 10. 1997	La la companya da series de la companya de la comp	
Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	20	684.3	640.0	45.0	
Pier 1	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 2	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 3	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 4	0	0	0	0	140	0	1	0	0	0	0.0	and the second se
Pier 5	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 6	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 7	0	0	0	0	140	0	1	0	0	0	0.0	
Fwd. Abut.	0	0	0	0	140	0	1	20	685.9	640		top for the second seco
Total								40	005.5	040	50.0	
												1900
							Qty x 2 (L/R)	80				3800

Pier Location		T	(Cap		STOCK OF STOCK	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	r Quantities		assingle of	Star Barris	and the state of a		
Pier Location	Length	Width	Depth	Area	11/-1	140 141		Stem				Footing		Total Volume
Pier 1 (Spr Ftg)		Widan	Depui	-	Volume	Width	Height	Length	Volume	Width	Depth	Length	Volume	rotal volume
Pier 2	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00	0	(
Pier 3														(
Pier 4														
Pier 5														C
Pier 6										-				(
Pier 7														C
Total (Cu.Ft.)					0									C
Total (Cu.Yd.)					0				- 0				0	0
			Qty x 2 ((L/R)	0				0				0	0
					v				0				0	(

Abut Location	Length			ckwall				Beam Seat				Footin	a		
	(feet)	Width	Depth	Area	Volume	Width	Height	Area	Volume	Width	Depth		<u></u>	Volume	Total Volume
Rear Abut	45	3	7.6	22.80	1026	3	1.5	4.50	203	6	2	18		810	
Fwd. Abut	45	3	7.6	22.80	1026	3	1.5	4.50	203	-	2				
Total (Cu.Ft.)			1		2052						3	18	1	810	
Total (Cu.Yd.)									405					1620	407
(=======)			01		76				15					60	15
			Qty x 2 (UR)	152				30					120	302

				and the second	36"	Drilled St	hafts for Piers	L. T. Dentry				A CONTRACTOR OF THE
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 1	0	0	0	0	0	0	1	0	0	0	2.0	and the second
Pier 2	0	0	0	0	0	0	1	0	0	0	2.0	
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0	
Fwd. Abut.	0	10	0	0	0	0	1	0	0	0	0.0	
Total								0		0	0.0	0

Abut Location		٧	/all	
	Height	Length	Area	Volume
Rear Abut	24	125	3000.0	
RA Wing (L)	5	40	580.0	
RA Wing (R)	5	40	580.0	
Fwd Abut	24	125	3000.0	
FA Wing (L)	5	40	580.0	
FA Wing (R)	5	40	580.0	
Total (Sq.Ft.)			8320	

SCI-823-0.00 - PORTSMOUTH BYPASS S.R. 823 over Shumway Hollow Road L&R STRUCTURE TYPE STUDY - LIFE CYCLE COSTS

By: PJP Checked: JRC

Date: 4/17/2006 Date: 4/18/2006

LIFE CYCLE MAINTENANCE COST

					uctural Steel Paint		-	Superstructure Seal	ing	Appro	oach Pavement Res	urfacing
Alt. No.	Span Arra No. Spans	angement Lengths	Framing Alternative	Cost Per Cycle	Number of Maintenance Cycles	Total Life Cycle Cost	Cost Per Cycle	Number of Maintenance Cycles	Total Life Cycle Cost	Cost Per Cycle	Number of Maintenance Cycles	Total Life Cycle Cost
1	1	107.00	5 Steel Girders /per BRIDGE	\$236,700	2	\$473,400	\$0	0	\$0	\$0	10	\$0
2	1	107.00 5	Prestressed Concrete Girders /per BRIDGE	\$0	0	\$0	\$24,000	2	\$48,000	\$0	10	\$0 \$0

						Bridge Deck Overl	ay (5)				Bridge Red	leckina (5)			Superstructure	Tatal	
Alt. No.	Span Arra No. Spans	ngement Lengths	Framing Alternative	Deck Demo & Chipping	Deck Overlay	Deck Joint Gland (2)	Number of Maintenance Cycles	Total Life Cycle Cost	Deck Concrete Cost (3)	Deck Reinforcing Cost (3)	Deck Joint Cost (2)	Deck Removal Cost	Number of Maintenance Cycles	Total Life Cycle Cost	Life Cycle Maintenance Cost (1)	Total Initial Construction	Total Relative Ownership
1 .	1	107	5 Steel Girders /per BRIDGE	\$29,200	\$35,400	n/a		£04.000	6 044 5 00				0,000	COST	COSt (1)	Cost	Cost
						in a	100	\$64,600	\$214,500	\$91,200	n/a	\$79,700	1	\$385,400	\$923,000	\$2,040,000	\$2,963,000
2	1	107	5 Prestressed Concrete Girders /per BRIDGE	\$29,200	\$35,400	n/a	° 1 ,	\$64,600	\$209,900	\$89,100	n/a	\$79,700	1	\$378,700	\$491,000	\$2,310,000	\$2,801,000
Structural S	teel Painting:							Deides Dede									

Structural Structural St	Steel Painting: eel Area:							Bridge Redeo Bridge Deck Joi	:king: int Cost per foot:				NOTES:		Works, Mar of Government			
	Web <u>Depth (in.)</u>	No. <u>Stringers</u>	Total Span <u>Length (ft.)</u>	Assumed Ave. Bot. Flange Width (in.)	Nominal Exposed Girder Area (sg. ft.)	Secondary Member <u>Allowance</u>	Total Exposed Steel <u>Area (sq. ft.)</u>	Structural Expan	nsion Joint Including	Year 2005	Annual Escalation	Year 2008	(2008 constructi				and are expressed in	
Alt. 1	56	10	107.00	40.00		52		Elastomeric Stri	p Seal	\$250.00	3.5%	\$277.18	Bridges are assi	umed to have semi-integral	abutments, there	fore no strip seal of	leck joints will be req	uired except for Alt. 3.
		10	107.00	18.00	14,802	20%	17,800		Bridge	No.			3. See Superstruct	ure Cost sheet.				
Painting Cost	perso ft.							Alt. 1	Width 90.00	Joints 0			4 . 0	o				
	Year	Annual	Year					Alt. 2	90.00	ō			4. See Alternative	Cost Summary sheet.	• 1			
Prep. Prime	2005 \$6.75 \$1.75	Escalation 3.5%	<u>2008</u> \$7.48					Bridge Deck Re	moval Cost:				Assume superst	deck overlay at Year 25 and tructures are painted or sea	led on a 25-year r	acement at Year 5 recurrence interva	"O. I.	
Intermed.	\$1.75	3.5% 3.5%	\$1.94 \$1.94						Deck Area (3)	Year	Deck Removal		Assume comple	te bridge replacement at Ye	ear 75.			
Finish	\$1.75	3.5%	\$1.94						(sq. ft.)	2008	Cost		6. Life cycle mainte	enance cost differences are	assumed to be n	redominately a fur	action of superstructu	
Total	\$12.00		\$13.30					Alt. 1 Alt. 2	9,630 9,630	\$8.28 \$8.28	\$79,700 \$79,700		Consequently, s	ubstructure lifecycle mainte	enance costs are r	not included in this	analysis.	re maintenance costs.
	ture Sealing:									Renderation of Advances			Approach Pay	vement Resurfacing:				
PS Concrete								Bridge Deck (<u>Overlay (Item 848):</u>				Resurface Perpe	etual Asphalt Pavement:				
72" Modified /	AASHTO Type 4	Diag	No. Tatal					Bridge Deck MS	C Overlay Cost per sq	vd ·			Resurfacing Uni	ts Costs:				
Bot. Flange	26	<u>Diag.</u>	<u>No. Total</u> 1 26.00							Year	Annual	Year				Year 2004	Annual Escalation	Year
Louise Ellete	8		2 16.00					Micro Silica Moo	dified Concrete Overlay nolition (1.25" thick)		Escalation	2008		ng, Asphalt Concrete, per s	q. yd.	\$0.98	3.5%	2008 \$1.12
Lower Fillets Web	99	12.73	2 25.46 2 92.00					Surface Prepara	nonuon (1.25 tn/ck)	\$25.58	3.5%	\$29.35	(Item 254)	and the complete state of the second				
Upper Fillets	3 3	4.24	2 8.49					Using Hydroden		\$22.85	3.5%	\$26.22				Year	Annual	
Teo Flores	11 2		2 22.36					Hand Chipping			101222					2004	Annual Escalation	Year 2008
Top Flange Total Exposed	4 Perimeter		2 8.00 198.30 in.					Hand Chipping		\$37.07	3.5%	\$42.54	Asphalt Concrete	e Surface Course, per cu. y	rd.	\$72.00	3.5%	\$82.62
Total Exposed	a r enimeter		198.30 in.					Bridge Deck MS	C Overlay Cost per cu	. yd.:								
66" Modified A	ASHTO Type 4							Micro Silica Mod	lified Concrete Overlay				Asphalt Resurface	cing Costs:				
Bot. Flange	<u> H</u> V 26		No. Total					(vanable Thickn	ess), Material Only	\$144.00	3.5%	\$165.24	-5	Approach	Approach			
bot. Thange	20		1 26.00 2 16.00								Hand	Variable		Roadway	Roadway			Wearing Course
Lower Fillets	9 9	12.73	2 25.46						Deck Area (3)	Deck Area	Chipping	Thickness		Length (ft.) (4)	Width (ft.)	Area (sq. yd.)	<u>Thickness (in.)</u>	Volume (cu. yd.)
Web Upper Fillets	40		2 80.00	5					<u>(sq. ft.)</u>	<u>(sq. yd.)</u>	<u>(sq. yd.)</u>	Repair (cu. yd.)	Alt. 1	0.0	38.0	0	1.50	0.0
opper rillets	3 3 11 2		2 8.49 2 22.36					Alt. 1	9,630	1,070	27	24	Alt. 2	0.0	38.0	0	1.50	0.0
Top Flange	4		2 8.00 in.					Alt. 2	9,630	1,070	27	24						
Total Exposed PS Concrete		-	186.30					Assume 25% of	deck area requires rem	noval to depth of 4	1.5" (3.25" addition:	al removal).						
	No.	Total Span	Nominal Exposed Ream	Secondary	Total			Bridge Deck Joir	nt Gland Replacement	Cost per foot								
	Stringers	Length (ft.)	Exposed Beam Area (sq. ft.)	Member Allowance	Exposed Concrete Area (sq. yd.)			2		Year	Annual	Year						
411 0	12			- monumou	Alea (Su. Yu.)			Electomeric Chi	0	2005	Escalation	2008						
Alt. 2	10	107.00	17,682	10%	2,160			Elastomeric Strip	seal Gland	\$62.50	3.5%	\$69.29						
Sealing Cost p	er sq. yd.:							Assume gland re	eplacement cost equals	s 25% of original d	leck joint construct	ion cost.						
		Year	Annual	Year														
Epoxy-Urethan	ne Sealer	<u>2004</u> \$9.68	Escalation 3.5%	<u>2008</u> \$11.11														

APPENDIX B Preferred Alternative Site Plan and Details

Ο

Ο

0

Ο

	BOI	RING LOCA	TIONS
	BORING No.	STATION	OFFSET
	TR-24	384+43.01	147.27' LT.
	TR-25	384+40.48	
	TR-26	384+03.66	26.84 RT.
BENC	HWARK I		BENCHMARK 2

7	R	A	FF	7	C	2) A	7	A

S.R. 823

CURRENT YEAR ADT (2010) --- 19,800 DESIGN YEAR ADT (2030) - 26,000 CURRENT YEAR ADTT (2010) -2,772 DESIGN YEAR ADTT (2030) = 3,640

\$ G

53

COUNT 1+65.1 1+77.1

1070 (383 384

SCI STA. ST

2

4

2

LAN -ALTERNATI CI-823-XXXX

PL A SCI

ПŐЧ

SI'

NARY BRI 823

2

PRE

-823-0.00

SCI-

PROPOSED STRUCTURE
TYPE; SINGLE SPAN, 72" TYPE 4 (MOD.) PRESTRESSED CONCRETE 1-BEAM WITH COMPOSITE REINFORCED CONCRETE DECK SUPPORTED BY SEMI-INTEGRAL ABUTMENTS FOUNDED ON PILES AND MSE WALL EMBANKMENTS
SPANS: 107'-O" c/c BEARINGS ROADWAY: 42' TOE TO TOE OF PARAPETS LOADING: HS-25 AND ALTERTNATE MILITARY LOADING FWS-60 PSF
SKEW: NONE CROWN: 0.016 FT/FT ALIGNMENT: TANGENT WEARING SURFACE: MONOLITHIC CONCRETE APPROACH SLABS: AS-I-BI (30' LONG) LATITUDE: LONGITUDE:

NOTES: 1. ALL SHEETS WITH PLAN DIMENSIONS ARE SHOWN HORIZONTAL. 2. EARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES SHALL CONFORM TO PLAN CROSS

SECTIONS. FOUNDATION DATA: ALL NEW PILES SHALL BE HP 14x73 PILES AND HAVE A MAXIMUM CAPACITY OF 90 TONS PER PILE.

SUPERSTRUCTURE	E DEPTH
ITEM	72" MODIFIED AASHTO TYPE 4 BEAM
SLAB (INCLUDING WEARING SURFACE)	8.5″
HAUNCH (BOTTOM OF SLAB TO TOP OF FLANGE)	2*
GIRDER DEPTH	72*
TOP OF WEARING SURFACE TO BOTTOM OF GIRDER FLANGE (INCH)	82.5*
TOP OF WEARING SURFACE TO BOTTOM OF GIRDER FLANGE (FEET)	6.875'

0

Ο

Uο

APPENDIX C Vertical Clearance Calculations

CORPO	RATION	Checked		PJP MTN	Date	04/14/06 04/17/06			
ob Name	SCI-823-0.00								
escription _	S.R. 823 OVER SH	HUMWAY HOL	LLOW RO						
Alternative 1	- 5-56" Grade 50W	Plate Girders,	, Single :	span			Point Location:	A	
Adjstment for	r Cross Slope								
	Comment	Crada		Offect					
-	e line to critical pt.:	<u>Grade</u>		Offset 34		-0.544			
r tollic grade		-0.010		Adjustment		-0.54			
			TOTAL	kujusuneni	-	-0.34			
Superstructu	re Depth						,		
	Comment	Depth (in)	F	Depth (ft)					
	Deck Thickness:		5	0.73					
	Haunch:			0.17					
Gird	er or Beam Depth:			4.92					
0.0									
		69 75		5.82					
Vertical Clear	rance at Critical Po	69.75 Total Super int	rstructure	5.82 e Depth (ft)	=	5.82			
Vertical Clear	rance at Critical Po	Total Super		e Depth (ft)					
Vertical Clear		Total Super	on @ Crit	e Depth (ft)	=	384+05.03			/
Vertical Clear	(Total Super int Static	on @ Crit	e Depth (ft) tical Point	=	384+05.03 45' Left			
Vertical Clear	(Profile	Total Super int Static Offset Locatic e Grade Eleva	on @ Crit on @ Crit ation at Ci	e Depth (ft) tical Point tical Point ritical Point	= = =	384+05.03 45' Left 695.97	, <u>v</u> ,		
Vertical Clear	(Profile Adjustrr	Total Super int Static	on @ Crit on @ Crit ation at Ci Slopes to	e Depth (ft) tical Point tical Point ritical Point o Beam CL	= = =	384+05.03 45' Left			
Vertical Clear	(Profile Adjustrr	Total Super int Static Offset Locatic e Grade Eleva nent for Cross Deck Elevatic	on @ Crit on @ Crit ation at Ci Slopes to on @ Crit	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point	= = = =	384+05.03 45' Left 695.97 -0.54			/
Vertical Clear	Profile Adjustrr Top of	Total Super int Static Offset Locatic e Grade Eleva nent for Cross Deck Elevatic	on @ Crit on @ Crit ation at Cri Slopes to on @ Crit uperstruc	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point	= = = =	384+05.03 45' Left 695.97 -0.54 695.42	-	· · ·	/
Vertical Clear	Profile Adjustrr Top of	Total Super int Static Offset Locatic e Grade Eleva hent for Cross Deck Elevatic Total Su Beam Elevatic	on @ Crit on @ Crit ation at Cr Slopes to on @ Cri uperstruct on @ Cri	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point	= = = =	384+05.03 45' Left 695.97 -0.54 695.42 -5.82	-		
Vertical Clear	Profile Adjustrr Top of Bottom of I	Total Super int Static Offset Locatic e Grade Eleva hent for Cross Deck Elevatic Total Su Beam Elevatic	on @ Crit on @ Crit ation at Cri Slopes to on @ Cri uperstruc on @ Cri on @ Cri	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point cture Depth tical Point	-	384+05.03 45' Left 695.97 -0.54 695.42 -5.82 689.60	-		/
Vertical Clear	Profile Adjuster Top of Bottom of P	Total Super int Static Offset Locatic e Grade Eleva nent for Cross Deck Elevatic Total Su Beam Elevatic Static	on @ Crit on @ Crit slopes to on @ Crit uperstruct on @ Crit on @ Crit on @ Crit	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point cture Depth tical Point tical Point tical Point		384+05.03 45' Left 695.97 -0.54 695.42 -5.82 689.60 29+55.00	-	· ·	
Vertical Clear	Profile Adjustrr Top of Bottom of P	Total Super int Static Offset Locatic e Grade Eleva hent for Cross Deck Elevatic Total Su Beam Elevatic Static Offset Locatic	on @ Crit on @ Crit ation at Cri Slopes to on @ Cri uperstruct on @ Cri on @ Cri on @ Cri ation at C	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point tical Point tical Point tical Point tical Point		384+05.03 45' Left 695.97 -0.54 695.42 -5.82 689.60 29+55.00 18' Rt.	-	· · · · · · · · · · · · · · · · · · ·	
Vertical Clear	(Profile Adjustrr Top of Bottom of P Profile Ad	Total Super int Static Offset Locatio e Grade Eleva hent for Cross Deck Elevatio Total Su Beam Elevatio Static Offset Locatio e Grade Eleva	on @ Crit on @ Crit ation at Cri Slopes to on @ Cri uperstruct on @ Cri on @ Cri on @ Cri ation at C Cross Slop	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point tical Point tical Point tical Point ritical Point ritical Point ritical Point ritical Point		384+05.03 45' Left 695.97 -0.54 695.42 -5.82 689.60 29+55.00 18' Rt. 669.66	-		
Vertical Clear	(Profile Adjustrr Top of Bottom of P Profile Ad	Total Super int Static Offset Locatic e Grade Eleva hent for Cross Deck Elevatic Total Su Beam Elevatic Static Offset Locatic e Grade Eleva justment for C op of Paveme	on @ Crit on @ Crit ation at Cri Slopes to on @ Cri uperstruct on @ Cri on @ Cri on @ Cri ation at C cross Slop ent @ Cri	e Depth (ft) tical Point tical Point ritical Point o Beam CL tical Point tical Point tical Point tical Point ritical Point ritical Point ritical Point ritical Point		384+05.03 45' Left 695.97 -0.54 695.42 -5.82 689.60 29+55.00 18' Rt. 669.66 -0.02	-		
Vertical Clear	(Profile Adjustrr Top of Bottom of P Profile Ad	Total Super int Static Offset Locatio e Grade Eleva hent for Cross Deck Elevatio Total Su Beam Elevatio Static Offset Locatio e Grade Eleva justment for C op of Paveme Actual	on @ Crit on @ Crit slopes to on @ Crit uperstruct on @ Crit on @ Crit on @ Crit ation at C cross Slop ant @ Crit Vertical	e Depth (ft) tical Point tical Point ritical Point o Beam CL itical Point cure Depth tical Point tical Point tical Point ritical Point pes to EOP tical Point		384+05.03 45' Left 695.97 -0.54 695.42 -5.82 689.60 29+55.00 18' Rt. 669.66 -0.02 669.64	-		

SR823overSchumway_updatedVertClrCalc.xls

.

	DRATION ////#	Mad Checke	d By _	PJP MTN		e 04/14/06 e 04/17/06	-		
		VERT		CLEARAN	CEC		-		
lob Name _	SCI-823-0.00				Struc	ture			
Description	S.R. 823 OVER SH	HUMWAY HC	DLLOW	ROAD	PID #	19415			
Alternative	1 - 5-56" Grade 50W	Plate Girder:	s, Singl	e span			Point Location:	В	
Adjstment f	or Cross Slope								
	<u>Comment</u>	Grade		<u>Offset</u>					
	Shoulder:		x	4	=	-0.16			
			Tota	I Adjustment	= .	-0.16	-		
				•					
Superstruct	ture Depth								
	Comment	Depth (in)		Depth (ft)					
	Deck Thickness:	8.75		0.73					
	Haunch:	2		0.17					
Gi	rder or Beam Depth:	59		4.92					
	-	69.75		5.82	•				
		00110							
Vertical Cle	arance at Critical Po	Total Supe	erstructu	ure Depth (ft)	=	5.82			
Vertical Cle	arance at Critical Po	Total Supe		ure Depth (ft)		5.82	<u></u>		
Vertical Cle		Total Supe int Stati	ion @ C	ure Depth (ft)	=	384+05.03		ad the second	
Vertical Cle		Total Supe int Stati Offset Locat	ion @ C ion @ C	re Depth (ft)	=	384+05.03 7.0' Rt.	<u></u>		
Vertical Cle	(Profile	Total Supe int Stati Offset Locati e Grade Elevi	ion @ C Ion @ C ation at	ritical Point Critical Point Critical Point	8 8	384+05.03 7.0' Rt. 695.97			
Vertical Cle	(Profile Adjustm	Total Supe int Stati Dffset Locati e Grade Elevi nent for Cross	ion @ C Ion @ C ation at s Slopes	ritical Point Critical Point Critical Point Critical Point		384+05.03 7.0' Rt. 695.97 -0.16			
Vertical Cle	(Profile Adjustm	Total Supe int Stati Offset Locati e Grade Elevi	ion @ C Ion @ C ation at s Slopes	ritical Point Critical Point Critical Point Critical Point		384+05.03 7.0' Rt. 695.97			
Vertical Cle	(Profile Adjustm	Total Supe int Stati Offset Locati e Grade Elevi nent for Cross Deck Elevati	ion @ C lon @ C ation at s Slopes ion @ C	critical Point Critical Point Critical Point to Beam CL Critical Point		384+05.03 7.0' Rt. 695.97 -0.16			
Vertical Cle	(Profile Adjustm Top of	Total Supe int Stati Offset Locati e Grade Elevi nent for Cross Deck Elevati	ion @ C Ion @ C ation at s Slopes ion @ C Superstri	ritical Point Critical Point Critical Point Critical Point to Beam CL Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81			
Vertical Cle	(Profile Adjustm Top of	Total Supe int Stati Offset Locatil e Grade Elevi hent for Cross Deck Elevati Total S	ion @ C Ion @ C ation at s Slopes ion @ C Superstri	ritical Point Critical Point Critical Point Critical Point to Beam CL Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82			
Vertical Cle	(Profile Adjustm Top of	Total Supe int Stati Offset Locati e Grade Elevi hent for Cross Deck Elevati Total S Beam Elevat	ion @ C lon @ C ation at s Slopes ion @ C Superstri lon @ C	ritical Point Critical Point Critical Point Critical Point to Beam CL Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82	-		
Vertical Cle	(Profile Adjustm Top of Bottom of E	Total Supe int Stati Offset Locati e Grade Elevi hent for Cross Deck Elevati Total S Beam Elevat	ion @ C lon @ C ation at s Slopes ion @ C Superstri lon @ C	ritical Point Critical Point Critical Point Critical Point to Beam CL Critical Point Critical Point Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82 689.99	-		
Vertical Cle	C Profile Adjustm Top of Bottom of E	Total Supe int Stati Offset Locati e Grade Eleva nent for Cross Deck Elevati Total S Beam Elevat Stat	ion @ C ion @ C ation at s Slopes ion @ C Superstri ion @ C ion @ C	ritical Point Critical Point Critical Point Critical Point to Beam CL Critical Point Critical Point Critical Point Critical Point Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82 689.99 30+07.00	-		
Vertical Cle	Profile Adjustm Top of Bottom of E	Total Supe int Stati Offset Locatil e Grade Elevi hent for Cross Deck Elevati Total S Beam Elevat Stat Offset Locat	ion @ C lon @ C ation at s Slopes ion @ C Superstri lon @ C ion @ C ration at	ritical Point Critical Point Critical Point Critical Point Critical Point Critical Point Critical Point Critical Point Critical Point Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82 689.99 30+07.00 18' Rt.			
Vertical Cle	C Profile Adjustm Top of Bottom of E Profile Adj	Total Supe int Stati Offset Locati e Grade Elevi hent for Cross Deck Elevati Total S Beam Elevat Stat Offset Locat e Grade Elevi	ion @ C ion @ C ation at s Slopes ion @ C Superstri lon @ C ion @ C ration at Cross Sl	critical Point Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82 689.99 30+07.00 18' Rt. 668.86			
Vertical Cle	C Profile Adjustm Top of Bottom of E Profile Adj	Total Supe int Stati Offset Locatil e Grade Elevi hent for Cross Deck Elevati Total S Beam Elevat Stat Offset Locat e Grade Elevi justment for C	ion @ C lon @ C ation at s Slopes ion @ C Superstri lon @ C ion @ C ion @ C ration at Cross Sl eent @ C	critical Point Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82 689.99 30+07.00 18' Rt. 668.86 -0.25	-		
Vertical Cle	C Profile Adjustm Top of Bottom of E Profile Adj	Total Supe int Stati Offset Locati e Grade Elevati Total S Beam Elevat Stat Offset Locat e Grade Elev justment for C op of Pavem Actual	ion @ C lon @ C ation at s Slopes ion @ C Superstri lon @ C ion @ C	ritical Point Critical Point		384+05.03 7.0' Rt. 695.97 -0.16 695.81 -5.82 689.99 30+07.00 18' Rt. 668.86 -0.25 668.61	-		

t.

L

.

SR823overSchumway_updatedVertClrCalc.xls

Corpor	ATION		le By ed By			04/14/06 04/17/06	•	-		P40303	
		VER	TICAL C	LEARAN	CE CA	LCULAT	ONS				
lob_Name <u>S</u>	CI-823-0.00				Struct	ure					
Description <u>S</u>	.R. 823 OVER SH	HUMWAY HO	OLLOW R	OAD	PID #						
Alternative 2 - 5-	72" Type 4 Mod	ified Prestre	essed I-Be	eams, Sing	le span		Point Locat	ion:	A		
Adjstment for Cr	ross Slope										
Co	mment	Grade		Offset							
	ne to critical pt.:		. v			-0,544					
T Totale grade in		-0.010				-0.54					
			TOTAL	Adjustment	-	-0,34					
Superstructure I	Depth										
Co	mment	Depth (in)	1	Depth (ft)							
	Deck Thickness:	8.75	-	0.73							
	Haunch:										
0.1				0.17							
Girder	or Beam Depth:			6	-						
		82.75		6.9							
			perstructur	re Depth (ft)	=	6.90					
Vertical Clearan	ce at Critical Po		perstructur	re Depth (ft)	=	6.90					
Vertical Clearan	ce at Critical Po	int		re Depth (ft)		6.90 384+05.03					
Vertical Clearan	· · · · · · · · · · · · · · · · · · ·	int	tion @ Cr	itical Point	=						
Vertical Clearan	(int Stat	tion @ Cr tion @ Cr	itical Point	2	384+05.03					
Vertical Clearan	(Profile	<i>int</i> Stat	tion @ Cr tion @ Cr vation at C	itical Point itical Point Critical Point	2	384+05.03 45' Left					
Vertical Clearan	(Profile Adjustm	<i>int</i> Stat Offset Local e Grade Elev	tion @ Cr tion @ Cr vation at C ss Slopes f	itical Point itical Point Critical Point to Beam CL		384+05.03 45' Left 695.97					
Vertical Clearan	(Profile Adjustm	int Stat Offset Local e Grade Elev nent for Cros Deck Eleva	tion @ Cr tion @ Cr vation at C ss Slopes I tion @ Cr	itical Point itical Point Critical Point to Beam CL		384+05.03 45' Left 695.97 -0.54					
Vertical Clearan	Profile Adjustm Top of	int Stat Offset Local e Grade Elev nent for Cros Deck Eleva	tion @ Cr tion @ Cr vation at C ss Slopes I tion @ Cr Superstru	ritical Point ritical Point Critical Point to Beam CL ritical Point cture Depth		384+05.03 45' Left 695.97 -0.54 695.42	-				
Vertical Clearan	Profile Adjustm Top of	int Stat Offset Locat e Grade Elev nent for Cros Deck Eleva Total Beam Eleva	tion @ Cr tion @ Cr vation at C ss Slopes f tion @ Cr Superstru tion @ Cr	ritical Point ritical Point Critical Point to Beam CL ritical Point cture Depth		384+05.03 45' Left 695.97 -0.54 695.42 -6.90					
Vertical Clearan	Profile Adjustm Top of Bottom of I	int Stat Offset Locat e Grade Elev nent for Cros Deck Eleva Total Beam Eleva	tion @ Cr tion @ Cr vation at C ss Slopes I tion @ Cr Superstru tion @ Cr tion @ Cr	ritical Point ritical Point Critical Point to Beam CL ritical Point ritical Point ritical Point		384+05.03 45' Left 695.97 -0.54 695.42 -6.90 688.52					
Vertical Clearan	Profile Adjustm Top of Bottom of I	int Stat Offset Local e Grade Elev hent for Cros Deck Eleva Total Beam Eleva Sta	tion @ Cr tion @ Cr vation at C is Slopes f tion @ Cr Superstru tion @ Cr tion @ Cr	ritical Point ritical Point Critical Point to Beam CL ritical Point ritical Point ritical Point		384+05.03 45' Left 695.97 -0.54 695.42 -6.90 688.52 29+55.00	-				
Vertical Clearan	C Profile Adjustm Top of Bottom of I	int Stat Offset Locat e Grade Elev hent for Cros Deck Eleva Total Beam Eleva Sta Offset Loca	tion @ Cr tion @ Cr vation at C ss Slopes f tion @ Cr Superstru tion @ Cr tion @ Cr tion @ Cr vation at C	ritical Point ritical Point Critical Point to Beam CL ritical Point ritical Point ritical Point ritical Point Critical Point		384+05.03 45' Left 695.97 -0.54 695.42 -6.90 688.52 29+55.00 18' Rt.					
Vertical Clearan	Profile Adjustm Top of Bottom of I Profil Ad	int Stat Offset Locat e Grade Elev hent for Cros Deck Eleva Total Beam Eleva Sta Offset Loca e Grade Elev	tion @ Cr tion @ Cr vation at C is Slopes I tion @ Cr Superstru tion @ Cr tion @ Cr tion @ Cr vation at C Cross Slo	ritical Point ritical Point Critical Point to Beam CL ritical Point ritical Point ritical Point ritical Point Critical Point		384+05.03 45' Left 695.97 -0.54 695.42 -6.90 688.52 29+55.00 18' Rt. 669.66					
Vertical Clearan	Profile Adjustm Top of Bottom of I Profil Ad	int Stat Offset Locat e Grade Elev hent for Cros Deck Eleva Total Beam Eleva Sta Offset Loca e Grade Elev justment for op of Paven	tion @ Cr tion @ Cr vation at C ss Slopes f tion @ Cr Superstru tion @ Cr tion @ Cr tion @ Cr vation at C Cross Slo nent @ Cr	ritical Point ritical Point Critical Point to Beam CL ritical Point ritical Point ritical Point ritical Point Critical Point		384+05.03 45' Left 695.97 -0.54 695.42 -6.90 688.52 29+55.00 18' Rt. 669.66 -0.02	-				
Vertical Clearan	Profile Adjustm Top of Bottom of I Profil Ad	int Stat Offset Locat e Grade Elev hent for Cros Deck Eleva Total Beam Eleva Sta Offset Loca e Grade Elev justment for op of Paven Actua	tion @ Cr tion @ Cr vation at C ss Slopes f tion @ Cr Superstru tion @ Cr tion @ Cr tion @ Cr vation at C Cross Slo nent @ Cr al Vertical	ritical Point ritical Point Critical Point to Beam CL ritical Point ritical Point ritical Point critical Point Critical Point ppes to EOP ritical Point		384+05.03 45' Left 695.97 -0.54 695.42 -6.90 688.52 29+55.00 18' Rt. 669.66 -0.02 669.64	-				

SR823overSchumway_updatedVertClrCalc.xls

CORPORA			By <u>PJP</u> By MTN	-	04/14/06 04/17/06		P403	
			ICAL CLEARAI	-				
ob Name <u>SC</u>	1-823-0.00			Struct	ture			
escription <u>S.F</u>	7. 823 OVER SI	HUMWAY HO	LLOW ROAD		19415			
Alternative 2 - 5-7	2" Type 4 Mod	ified Prestres	ssed I-Beams, Sin	gle spar	1	Point Location:	В	
Adjstment for Cro	ss Slope							
Com	mont	Crada	Offeet					
<u>com</u>	<u>iment</u>	<u>Grade</u>	<u>Offset</u> x 4	_	0.46			
	Shoulder:	-0.04		-	-0.16			
			Total Adjustmen	τ =	-0.16			
Superstructure D	epth	· · · · ·						
Com	nment	Depth (in)	Depth (ft)					
	eck Thickness:	8.75	0.73					
20	Haunch:		0.17					
Girder or	r Beam Depth:		6					
Gilder of	Beam Depair.	82.75		-				
					6.00			
		Total Supe	erstructure Depth (f	.) =	6.90			
		·						
Vertical Clearanc								
		Stati	on @ Critical Poir	it =	384+05.03			
	1	Offset Locati	on @ Critical Poir	it =	7.0' Rt.			
	Profil	e Grade Eleva	ation at Critical Poir	nt =	695.97			
	Adjustn	nent for Cross	Slopes to Beam C	L = _	-0.16	_		
	Top of	Deck Elevati	on @ Critical Poir	it =	695.81			
		Total S	superstructure Dept	h =	-6.90			
	Bottom of		ion @ Critical Poir	-	688.91	-		
		Stati	ion @ Critical Poir	nt =	30+07.00		·	
			ion @ Critical Poin	-	18' Rt.	-		
			ation at Critical Poi		668.86			
			Cross Slopes to EO		-0.25			
		gaoanont ior (-	668.61	-		
		on of Pavom		– "		-		
		op of Pavem	-	o –	20 20			
		Actual	Vertical Clearanc		20.30			
		Actual	-	e =	20.30 17.0 16.5			

·

SR823overSchumway_updatedVertClrCaic.xls

APPENDIX D Preliminary Structure Site Plan

Ο

Ο

0

Ο

APPENDIX E

Preliminary Geotechnical Report & Preliminary MSE Wall Evaluation

April 26, 2006

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Dr., Suite 240 Dublin, OH 43017

Re: Preliminary Structural Foundation Recommendations (Revised) SCI-823 over Relocated Shumway Hollow Road Relocated Shumway Hollow over CSX Railroad SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03 Document # 0011

Dear Mr. Weeks:

This letter reports the revised findings of the subsurface exploration and preliminary foundation recommendations for the proposed structures at the SCI-823-0.00 Airport Interchange: SCI-823 over relocated Shumway Hollow Road and relocated Shumway Hollow Road over the CSX Railroad. It is anticipated that the proposed structure over Shumway Hollow Road will be a one-span elevated bridge. It is anticipated that the proposed abutments will be founded on a fill section, contained in MSE walls.

The proposed structure over the CSX Railroad is understood to be a one-span bridge. The proposed grade at the new bridge location is understood to be approximately 662 feet. It is anticipated that at least part of the structure will be placed on a fill section, using MSE walls to contain the embankments. See attached plan and profile drawings for both planned structures and boring locations.

The findings and recommendations presented in this report should be considered preliminary. It is understood that the final number and locations of substructure units have not been determined yet. After the substructure unit locations have been established, the results of the borings should be reviewed to determine if additional exploration is needed to finalize the foundation recommendations for the new structures.

Field Exploration

Three borings, TR=24 through TR-26, were drilled at the proposed structure for SCI-823-0.00 over the realigned Shumway Hollow Road between August 19 and 23, 2004. The borings were drilled to depths from 33.0 to 53.5 feet. The borings were extended into bedrock, which was verified by rock coring. Two borings, TR-27 and TR-28, were drilled at the proposed structure over the CSX Railroad on August 25, 2004 and February 2, 2005. The borings were drilled to depths of 17.5 and 30.0 feet, respectively. The borings were extended into bedrock, which was

6121 Huntley Road • Columbus, Ohio 43229-1003 • (614) 888-0040 • FAX (614) 848-6712 With Offices Throughout The Midwest www.dlz.com

verified by rock coring. Boring Logs for both structures and information concerning the drilling procedures are attached.

The boring locations were selected by TranSystems Corporation. Ground surface elevations have been accurately established by as-drilled surveys for this project.

Findings

The following text presents generalized subsurface conditions encountered by the borings. For more detailed information, please refer to the attached Boring Logs.

SCI-823-0.00 over Relocated Shumway Hollow

The borings for the structure crossing SCI-823-0.00 generally encountered up to 12 inches of topsoil at the surface. Underlying the surficial materials, the borings encountered stiff to hard silt and clay (A-6a), clay (A-7-6), sandy silt (A-4a) and loose to dense gravel with sand (A-1-b) and fine sand (A-3) to depths between 23.0 and 43.5 feet where bedrock was encountered.

Bedrock encountered at the proposed structure location was composed primarily of hard sandstone that was generally slightly fractured to intact. Recovery of the core samples ranged from 93 to 100% and RQD values ranged from 42 to 90% with an average RQD of 74%.

Seepage was encountered between depths of 6.0 and 21.0 feet below the ground surface. At completion of drilling, water levels ranged from 8.5 to 29.8 feet. However, the final water levels include drilling water and may not be representative of the actual groundwater conditions. Groundwater levels may vary seasonally.

Relocated Shumway Hollow over CSX Railroad

Boring TR-28 encountered 8 inches of asphalt concrete at the surface. Underlying the pavement, the boring encountered very stiff to hard silt and clay (A-6a) and loose to medium dense coarse and fine sand (A-3a) to a depth of 16.0 feet where bedrock was encountered. Boring TR-27 was drilled off the road, but did not encounter topsoil. Underlying the surface, the boring encountered hard sandy silt to a depth of 7.5 feet where bedrock was encountered.

Bedrock encountered at the proposed structure location was composed primarily of medium hard to hard sandstone that was generally slightly fractured to intact. Recovery of the core samples ranged from 50 to 100% and RQD values ranged from 12 to 100% with an average RQD of 76%.

Seepage was encountered at depths between 14.0 and 18.5 feet below the ground surface in boring TR-28. No seepage was encountered in boring TR-27. At completion of drilling, the water level in TR-28 was 10.0 feet. Boring TR-27 collapsed at a depth of 6.0 feet. It should be noted that the final water levels include drilling water and consequently may not be representative of the actual groundwater conditions. Groundwater levels may vary seasonally.

Conclusions and Recommendations

SCI-823-0.00 over Relocated Shumway Hollow

Due to the embankment fill, it appears that driven H-piles to bedrock will be the best-suited foundation type for support of the proposed structure. If high lateral or uplift loads are anticipated, drilled shafts founded in bedrock may be needed. The actual design lengths or rock sockets will need to be designed based upon actual loading conditions. A table summarizing the site conditions and foundation recommendations follows subsequently.

Additionally, since the SCI-823-0.00 mainline and the Relocated Shumway Hollow will be located on a relatively large embankment and could be potentially underlain by compressible soils, the abutment and pier locations may need special construction procedures, and/or an additional load applied to the design loads to account for any negative skin friction associated with the embankment loading.

not for H-piles

It should be noted that if driven H-piles are selected, special pile-driving techniques may be required. Soils that have high silt and fine sand contents that also have high moisture contents, such as those encountered within this area, tend to produce exaggerated blow counts during pile driving, which do not reflect the actual load carrying ability of the strata due to pore pressures. Piles should be driven to their design capacity, allowed to sit at least 24 hours, then re-driven to ensure that the design capacity has been achieved. If the design capacity has not been achieved due to elevated pore pressures, continue to drive the pile until adequate capacity has been achieved with confirmation after 24 hours.

Because of the large potential lateral loads, embankment heights and depths of relatively compressible soils, differential settlement will also need to be evaluated. It is strongly recommended that we discuss the proposed foundation design after TranSystems has had a chance to review these recommendations.

No grain size analyses were performed for scour analysis since the proposed structure location is not located along a stream location.

Relocated Shumway Hollow over CSX Railroad

Based upon the amount of embankment fill required for the construction of the bridge over the CSX Railroad, spread footings or drilled shafts could be used to support the rear abutment. Grade is expected to remain near existing levels near the forward abutment; however, bedrock on the eastern side of the bridge is deeper so either spread footings on rock or drilled shafts to rock can be used to support the forward abutment. Any footings should be embedded into the bedrock. The table summarizing the site conditions and foundation recommendations follows subsequently. It should be noted that the plan location and elevation of the proposed abutments varies from the preliminary structural borings. It will be necessary to drill borings for the structures once the design has been set.

The railroad the structure crosses is located within a cut. The stability of this railroad cut section should be evaluated relative to the location of the anticipated abutment locations once the final design is complete.

Boring Number	Structural Element	Existing Ground Surface Elevation (Feet)	Approximate Bearing Elevation (Feet)	Recommended Foundation Type	Allowable Bearing Capacity
	SCI-8	<u>23-0.00 over H</u>	Relocated Shum	way Hollow Road	
TR-24	Rear (west) Abutment	686	643	H-Piles	90 tons
TR-25	Pier	675	643	H-Piles	90 tons
TR-26	Forward (east) Abutment	665	643	H-Piles	90 tons
	Reloca	ited Shumway	Hollow Road o	ver CSX Railroad	
TR-27	Rear Abutment	627*	630*	Drilled Shafts / Spread Footings	15 TSF
TR-28	Forward Abutment	649*	640*	Drilled Shafts / Spread Footings	15 TSF

* Elevations are approximated from topographic surveys and provided plan and profile drawings. Preliminary boring locations and elevations vary from the currently proposed abutment locations.

No grain size analyses were performed for scour analysis since the proposed structure location is not located along a stream location.

Closing

If you have any questions, please contact our office for clarification.

Sincerely,

DLZ OHIO, INC.

Steven J. Riedy Geotechnical Engineer

VY

Arthur (Pete) Nix, P.E. Senior Geotechnical Engineer

Attachments: Site Plan (2) General Information – Drilling Procedures and Logs of Borings Legend – Boring Log Terminology Boring Logs TR-24, TR-25, TR-26, TR-27, TR-28

cc: File

M:\proj\0121\3070.03\Structures\Sumway Hollow\Shumway Hollow Preliminary Structural Foundation-SJR.doc

Ö

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Geot\Forms\General Info English.doc

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-З. pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" 4. columns.
- Sample recovery from each drive is indicated numerically in the column headed "Recovery". 5.
- The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column. 6.
- The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column. 7.
- Sample numbers are designated consecutively, increasing in depth. 8.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils: Granular Soils - Compactness

	Blows/Foot
<u>Term</u>	Standard Penetration
Very Loose	0-4
Loose	4 – 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Cohesive Soils - Consistency

	Unconfined	Blows/Foot	
	Compression	Standard	
<u>Term</u>	tons/sq.ft.	Penetration	Hand Manipulation
Very Soft	less than 0.25	below 2	Easily penetrated by fist
Soft	0.25 – 0.50	2-4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.0	4 – 8	Penetrated by thumb with moderate pressure
Stiff	1.0 - 2.0	8 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 — 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

Color - If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the b. predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows: C. Desertation

Description	Size	Description	<u>Size</u>
Boulders	Larger than 8"	Sand – Coarse	2.0 mm to 0.42 mm
Cobbles	8" to 3"	– Fine	0.42 mm to 0.074 mm
Gravel – Coarse	3" to 34"	Silt	0.074 mm to 0.005 mm
– Fine	34" to 2.0 mm	Clay	smaller than 0.005 mm

S:\Dept\Geotechnica/Forms\Borings\Legend ODOT English.doc
The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size. d. Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes. e. trace 0 to 10% little 10 to 20% some 20 to 35% "and" 35 to 50% Moisture content of cohesionless soils (sands and gravels) is described as follows: f. Term **Relative Moisture or Appearance** Dry No moisture present Damp Internal moisture, but none to little surface moisture Moist Free water on surface Wet Voids filled with free water The moisture content of cohesive soils (silts and clays) is expressed relative to plastic properties. g. Term **Relative Moisture or Appearance** Dry Powderv Damp Moisture content slightly below plastic limit Moist Moisture content above plastic limit but below liquid limit Wet Moisture content above liquid limit 10. Rock Hardness and Rock Quality Designation The following terms are used to describe the relative hardness of the bedrock. а. Term Description Very Soft Permits denting by moderate pressure of the fingers. Resembles hard soil but has rock structure. (Crushes under pressure of fingers and/or thumb) Resists denting by fingers, but can be abraded and pierced to shallow depth by a pencit Soft point. (Crushes under pressure of pressed hammer) Resists pencil point, but can be scratched with a knife blade. (Breaks easily under single Medium Hard hammer blow, but with crumbly edges.) Hard Can be deformed or broken by light to moderate hammer blows. (Breaks under one or two strong hammer blow, but with resistant sharp edges.) Very Hard Can be broken only by heavy and in some rocks repeated hammer blows. Rock Quality Designation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is b. obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core run. 11. Gradation - when tests are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c). 12. When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated graphically. 13. The standard penetration (N) value in blows per foot is indicated graphically.

Penetro- I cocation: MATER Watter Penetro- meter MATER Watter Penetro- meter 1 Location: Vater level 1 Penetro- Penetro- meter Water level 1 4.5+ Hard brown SILT AN 2 4.5+ Hard brown SILT AN 3 2.75 Stiff to very stiff brown 5 2.0 Stiff to very stiff brown 7 1.25 1.25 8 3.75 1.0 9 1.0 1.5	Ins. inc. Ins. inc. Ins. inc. Ins. ins. inc. Ins. ins. i	8/20/04	8/20/04 10	pd GRADI		6 6 6)C		
Icocation: Location: Sample Location: No. Hand No. Hand No. Press / Core No. Press / Core </th <th>Location: Sample Location: No. Hand No. Press / Core Press / Core Restronge 3 2.75 4.5+ 1 4.5+ 1.5 3 2.75 1.25 8 3.75 1.0 10 1.5 1.0</th> <th>SCI-823-0.00</th> <th></th> <th>WA I EK OBSERVATIONS: Water seepage at: 6.0' Water level at completion: 29.8' (includes driling water)</th> <th>DESCRIPTION</th> <th>Topsoil - 12"</th> <th>Hard brown SILT AND CLAY (A-6a), little fine to coarse sand damp.</th> <th></th> <th>Stiff to very stiff brown CLAY (A-7-6), little fine to coarse sand little silt, varved; moist.</th> <th></th> <th>5</th> <th>DRAFI</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Location: Sample Location: No. Hand No. Press / Core Press / Core Restronge 3 2.75 4.5+ 1 4.5+ 1.5 3 2.75 1.25 8 3.75 1.0 10 1.5 1.0	SCI-823-0.00		WA I EK OBSERVATIONS: Water seepage at: 6.0' Water level at completion: 29.8' (includes driling water)	DESCRIPTION	Topsoil - 12"	Hard brown SILT AND CLAY (A-6a), little fine to coarse sand damp.		Stiff to very stiff brown CLAY (A-7-6), little fine to coarse sand little silt, varved; moist.		5	DRAFI					
S θλμΩ - 0 0 4 10 0 2 2 S θλμΩ - 0 0 4 10 0 2 2 S θλμΩ - 0 0 7 7 5 5 2 S θλμΩ - 0 0 7 7 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S 9ήθ - 0, ω 4 ω ω 5 2 θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ	ocation:	Γ		(tsf)		4.5+	4.5+	2.75	2.0	2.0	2.25	1.25	3.75	1.0	1.5	
			900	e No. No.						—							
Bit Compare Compare <thcompare< th=""> <thcompare< th=""> <t< td=""><td>Boring TR: Bilows per 6" Bilows per 6" TR: 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 11 10 <t< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td>м </td><td>4</td><td></td><td>••</td><td></td><td>~</td><td>0 </td><td>2</td><td>÷</td></t<></td></t<></thcompare<></thcompare<>	Boring TR: Bilows per 6" Bilows per 6" TR: 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 11 10 <t< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td>м </td><td>4</td><td></td><td>••</td><td></td><td>~</td><td>0 </td><td>2</td><td>÷</td></t<>								м 	4		••		~	0 	2	÷
		ng TR-	ŀ				1		-								

LITE: 0151-3010-03 (4/56/5000 10:51 WW)

Job No. 0121-3070.03	to 8/23/04	N	STANDARD PENETRATION (N) Natural Moisture Content, % -	Sill Clary PL → 1L Blows per foot + 0 % 10 20 30 40						
		GRADATION		es :4 %						· · · · · · · · · · · · · · · · · · ·
	+	GRAI		8 W %			·			
	8/20/04			u664 %	1		<u></u>			
Project: SCI-823-0.00	Date Drilled:	WATER OBSERVATIONS: Water seenane at: 6.0'	Water	DESCRIPTION	Medium dense brown FINE SAND (A-3), trace gravel; damp.	Soft gray SILTY CLAY (A-6b), little fine to coarse sand, trace gravel; moist.	Severely weathered gray SANDSTONE argittaceous.	@ 43.0', augers encountered difficult drilling. Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous.	micaceous, moderately to highly fractured. @ 44.8' to 44.9',45.2',45.4',47.0' contains argillaceous laminations and fractures. @ 47.0', slightly weathered, unfractured to slightly fractured.	Bottom of Boring - 53.5'
	Location:	Hand	Penetro- meter	(tst)		0.5				
ŀ		ble .	- alo)/	ଽଽଈ୳					ř.	
ļ		Sample No.		өлілД		13	4 4		RQD 77%	
is, Inc.	TR-24		(Uļ) ĀJƏ	[38	18		Rec 118"	
	Boring		ber 6" 6' 19			652.2-4	649.2- 10 17 22	642.7	Core 120"	632.7
ient: Tr	LOG OF:		Depth		<u>}</u> F	-34.0	40 40 40	₹ 5 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2	

MITE: 0157-3010-03 (4/30/2000 TO:31 WW)

.

Project: SCI-823-0.00	8/19/04 to 8/20/04	GRAD	6 Aggrega 6 6 M. Sand 6 6 M. Sand 7 PL Blows per foot - ○	2 2 6 6 6 6 6 6 6	4 6 13 37 40		·····		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
Project: SCI-823-0.00	Date Drilled:	WATER OBSERVATIONS: Water seepage at: 16.0', 21.0' Water level at completion: 16.4' (includes drilling water)	DESCRIPTION	Hard brown SILT AND CLAY (A-6a), little fine to coarse sand, trace gravel; damp.		Stiff to very stiff brown CLAY (A-7-6), trace fine sand; varved; damp to moist.		TAD			Loose brown FINE SAND (A-3), trace silt; damp.	@ 21.0', moist to wet.			
	Location:	Hand Penetro- meter	(tst)	4.0	4.5	2.0	1.25	1.75	2.5	2.25	-				1
		Sample No.	Drive Press /Cc	.	7		4		<u>ن</u>						_
<u>.</u>			Recovery	8			- 	<u>م</u>			~	о —	\$ 	7	
Client: TranSystems, Inc.	LOG OF: Boring TR-25	<u> </u>	ied swola	4 7 6 1		232	2351	244	3 3 5 18	2 3 5 18	4 3 4 18	1 3 18	11 12 18	3 7 18	
<u> </u>	١.		Elev. (ft) 674.6	l	· · · · · · · · · · · · · · · · · · ·		<u></u>	<u></u>	<u> </u>		_1 <u>₹</u> _1. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		<u>ത</u>		Б о́
ranSys	<u>.</u>]		ц ~ р			φ				ĩ	Ó			3	Χ.

3229 (614)888-0040	Job No. 0121-3070 03		GRADATION	l I Əjt	Aggrege Gand Aggrege Content, % -	7 % % % %		lightly to issively						
DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 *	Project: SCI-823-0.00			vvater seepage at: 16.0', 21.0' Water level at completion: 16.4' (includes drilling water)	DESCRIPTION	Severely weathered brown and grave SANDSTONE	ייייייייייייייייייייייייייייייייייייי	Hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, micaceous, argillaceous, massively bedded, slightly fractured. @ 32.0' to 37.0' highly fractured.	DRAFT	Bottom of Boring - 42.0'				
		Location:		rrand Penetro- meter	(tst)									
	F		ejd .	<i>ଇଠ</i> ୁ)/ ssaıd			<u>F</u>	R-2					
		_	Sample No.		evinO		13	RQD 42%	RQD 90%					
	<u>e</u>	I R-25		(uį) A	вкорая		9	Rec 46"	Rec 72"					
	stems	Buz		* 9 18	a swola		27 50/5	Core 48"	Core 72"	<u> </u>				
0	ran vy	о́п н		i L	544.6	644.6	642.6-7		<u> </u>				<u></u>	
F 4-030	Lient: Iransystems, Inc.	LUGUE: BORING IR-25					37.0 		4	 	₽ ₽ -	8 1 1 1	line in the second s	1

.

.

FILE: 0121-3070-03 1 4/26/2006 10:27 AM 1

.

	Job No. 0121-3070.03			STANDARD PENETRATION (N) Natural Moisture Content % -	(BIO										
(614)888-0040		8/19/04	GRADATION	pu pu	6 49919 6 6 49919 6 6. 5ai 8 7. 5ai 8 7. 5ai	6 6 6									
JNTLEY ROAD, COLUMBUS, OHIO 43229 +		Date Drilled:	OBSERVATIC	Water level at completion: 8.4' (includes drilling water)	DESCRIPTION	Hard gray SANDSTONE; very fine to fine grained, argillaceous, micaceous, slightly to moderately weathered, massively bedded, slightly fractured.	Bottom of Boring - 33.0'		DRAFT				-		
	l ocation.	-ucation:	Hand	reneuro- meter	(tst)										
	ſ	Samula	No.	ബരാ/				······································		 			·		
6	-26			н) Лив.	Dine Dine					 					
ms. In	L R			"9 Jed					·····	 			<u> </u>]
nSvste	Borin	-		Elev.	[
Client: TranSystems, Inc.	LOG OF: Boring TR-26			Depth El			<u>۲</u>	<u>8</u> 1 1 1 1	4 1	6 1 1 1 1	23 	·····	22 22		چ 1

-0040	Job No. 0121-3070.03	\$/04		Aggregation Content, % -	% % %		· /: /: /: 							
DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	roject: SCI-823-0.00	Approx. Sta. 36+00, 5 ft Lt. of Reloc. Shumway Hollow Date Drilled: 8/25/04	OBSERVATIONS: Water seepage at: None Water level at completion: None (boring collapsed @ 6.0')	DESCRIPTION	Hard brown SANDY SILT (A-4a), trace clay, trace to little gravel; damp.		@ 6.0' to 7.5', contains sandstone fragments.	Medium hard to hard brown and gray SANDSTONE; very fine to fine grained, slightly to highly weathered, argillaceous, micaceous, massively bedded, slightly fractured. @ 7.8' to 10.0', rust stained. @ 7.8'.8.9' and 15.6', tow angle fractures.	@ 14.9' to 15.2', high angle fractures.	Dottom of Doring 47 El		DRAFT		
		Location: Ap	4	(tsf)	4.5+	4.5+	4.5+	1						
	r	- elome	No. Ba	Prive Press /Co		8			б% 					
4				Recovery	œ ₽				0" ROD 98%					
		- 2	<u> </u>	neq swola	10		10 50 16		Core Rec 120" 120"		<u> </u>			
TranSvetame	Boring			Elev. (ft) 646.3		<u>6</u>			<u>۲۵</u>	628.8	·····-			
Client: Tra				Depth E (ft) E	···· _ / ···	<u>م</u>				-17.5	50, 27 AI	4/36/300	58 58	s S

				_		
t	MA	10: 27	\$\\$\$\\$000	1	E0-040E-1210	el le:

Job No. 0121-3070.03			STANDARD PENETRATION (N) Natural Moisture Content, % -	PL I I I I I I I I I I I I I I I I I I I	× 10 × 10	0. ~ ~		2.		······································				
	02-02-05	GRADATION	put put	¥!S ? ? E 3 9 ?S W ? ?S 0 ? 2S 0 ?	6 6		······································				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Project: SCI-823-0.00	0, 20 ft Rt. of Reloc. Shumway Hollowbate Drilled:	WALER OBSERVATIONS: Water seepage at: 14.0', 18.5' Water level at completion: 10.0' the index delines under	היהיה היהיה היהיה היהיהיה והיה להימחתבה הוזוווה אמופון	DESCRIPTION	Asphalt Concrete Pavement - 8" Very stiff to hard brown SILT AND CLAY (A-6a), trace fine to coarse sand: damp	Medium dense reddish brown COARSE AND FINE SAND (A- 3a), (residual soil); moist.		5	DRAFT		Severely weathered gray SANDSTONE argittaceous. @ 18.5' to 24.0', broken.	Medium hard to hard gray SANDSTONE; very fine to fine grained, moderately to highly weathered, argillaceous, massively bedded, slightly fractured.		
	cation: Ap	Hand Penetm-	meter	(tsf)	4.0		<u> </u>				·			
ł		No.	භංට/	evinQ ะระยาๆ								% D %	RQD 100% R-2	
5	TR-28) <i>L</i> ID	NoseR	1	א ע	m	4		6		c RaD 12%		
				SWOIB	8	57	8 7 18	4 2 18	5 4 14	4 4 13	2 2012	60" 80"	Core B4" B4"	
21	LOG OF: Boring		Elev.	(ff) 659.7	-659.0-	656.7- 5	0			<u>ا –ا</u> چ چ		66 C	3	
	片	-	Depth 1		- h	$-\frac{\mu}{1}$		1 - 1 - 1		15 15 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		φ - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	—

60	8	N)	•	0		· · · · · · · · · · · · · · · · · · ·	······································		
Job No. 0121-3070 03		STANDARD PENETRATION (N)	Natural Moisture Content, % - PL - 1/1 Blows per foot - 0	20 30			······	· · · · · · · · · · · · · · · · · · ·	
	02-02-05	GRADATION	6 Aggrega 6 Clay 6 Clay 6 Clay 2 Clay 2 Clay 2 Clay 2 Clay 2 Clay	6 6 6 6					
Project: SCI-823-0.00	20 ft Rt. of Reloc. Shumway Hollowbate Dritted:	WATER OBSERVATIONS: Water seepage at: 14.0', 18.5' Water level at completion: 10.0' (includes drilling water)	DESCRIPTION	Bottom of Boring - 30.5'	L'AC				·
	Location: Ap	Hand Penetro- mater	(tst)						
		Sample No.	Prive Drive		· · · · · · · · · · · · · · · · · · ·	·	·		·
ž	TR-28		Кесолец						
TranSystems, Inc.	Е		ied swola		<u></u>	•••••			
INSyst	OF: Boring		Elev. (ft) 629.7	629.2-			·		· · · ·
yo∎.				Ψ					

,

.

LITE: 0151-3010-03 (4/56/5006 T0: 31 VM)

April 12, 2006

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Preliminary MSE Wall Evaluations Shumway Hollow Road SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03 Document # 0009

Dear Mr. Weeks:

This letter includes the findings of preliminary evaluations of mechanically stabilized earth (MSE) retaining walls on the above-referenced project. The findings included in this letter pertain to the MSE walls at the intersection of proposed 823 and Shumway Hollow Road. The findings of other preliminary MSE wall evaluations will be submitted in separate documents at a later date.

It should be noted that the results of these evaluations are based upon the findings of three preliminary structural borings. These borings were drilled for a preliminary bridge plan, essentially consisting of Shumway Hollow Road separating from grade and passing over proposed 823. The current design being considered is proposed 823 separating from grade and passing over an at-grade Shumway Hollow Road. Due to the change, the borings drilled for the previous design are not necessarily representative of soils in the area of the currently proposed structures. After the bridge design is finalized, it will be necessary to drill additional borings in the area of the proposed MSE walls in accordance with ODOT's specifications for subsurface investigations in order to finalize the MSE wall evaluations. Boring logs for borings TR-24, TR-25, and TR-26 are attached.

An MSE retaining wall essentially consists of good quality backfill material with layers of metal or plastic reinforcing that are attached to concrete facing panels. The MSE wall and associated backfill should be constructed in accordance with the specifications of the manufacturer of the MSE wall.

At the time this letter was prepared, it was understood that the plan location of the bridge structure for proposed 823 over Shumway Hollow Road is significantly different than the configuration shown on the plan and profile drawings dated 07/11/05. See attached plan and profile drawing. It is understood that the planned structure is being modified as follows: Shumway Hollow Road will be realigned essentially at existing grade; MSE walls will be placed

Michael D. Weeks, P.E., P.S. April 12, 2006 Page 2

at approximately stations 383+75 and 384+69 to contain the abutments and hold back the roadway embankment for proposed 823. Furthermore, it is assumed that the maximum height of the MSE wall at station 383+75 (Rear Abutment) and station 384+69 (Forward Abutment) will be approximately 28.8 feet high. This height is based upon the maximum difference between the proposed grade, and the approximate existing grade over the cross-section at station 384+69. See attached cross-section drawing. Profile of Shurway (bollow in build lowered) Had 35^{-1}

A preliminary global stability analysis and preliminary bearing capacity analysis were performed for the MSE walls at this bridge location in accordance with ODOT and AASHTO guidelines. The MSE walls were also analyzed for sliding, overturning and settlement. At the time this letter was prepared, it was not known what foundation type was to be used at this site to support the bridge abutments. However, the use of MSE walls at this site does not preclude the use of most common foundation types. Once a foundation type has been selected, DLZ should be informed so that the analyses may be revised as necessary.

Preliminary calculations for bearing capacity, sliding, and overturning as well as the results of the global stability analyses are attached. Other external and internal stability analyses are required for the design of an MSE wall, but are considered outside the scope of this report. The parameters required to perform the stability analyses are presented below.

In accordance with ODOT guidelines, a unit weight of 120 pcf and a friction angle of 34 degrees were selected for the backfill material in the reinforced zone. Similarly, the fill material used to construct the roadway embankments is assumed to have a unit weight of 120 pcf and a friction angle of 30 degrees. If the embankment fill material or backfill material for the reinforcing zone has properties significantly different from these values, DLZ should be informed so that the analyses may be revised as necessary.

Due to similarities in the soil profiles at this location, the results of the analyses of the MSE wall at the forward abutment are considered representative of both walls at this site. It should be noted, variations may be found in borings drilled for the final design that may change the results of these analyses. The results of preliminary analyses and recommendations for both wall locations will be presented jointly in this letter.

MSE Wall Evaluation at Station 383+75 (Rear Abutment) and Station 384+69 (Forward Abutment)

In the area of the proposed MSE walls, boring TR-25 generally encountered 12 inches of topsoil at the surface. Below the topsoil layer, primarily very stiff to hard silt and clay (A-6a) was encountered to a depth of 5.5 feet below ground surface. Below 5.5 feet,

Michael D. Weeks, P.E., P.S. April 12, 2006 Page 3

primarily stiff to very stiff clay (A-7-6) was encountered to a depth of approximately 18.0 feet below ground surface. Below 18.0 feet, primarily loose fine sand (A-3) was encountered to a depth of approximately 30.0 feet, at the top of bedrock. Underlying the soil, this boring encountered hard, slightly to moderately weathered sandstone to the bottom of the boring, at a depth of 42.0 feet.

The MSE walls at the rear and forward abutments are assumed to have a maximum height of approximately 28.8 feet. The minimum required embedment depth for this wall is 3.0 feet. 35°

Analyses for the MSE walls bearing on natural soils at this location yielded inadequate factors of safety for undrained and drained bearing capacity. Analyses were then performed assuming a five-foot undercut backfilled with compacted, granular fill. These analyses yielded an inadequate factor of safety for drained global stability. Consequently, analyses were performed assuming a seven-foot undercut backfilled with compacted, granular fill. These analyses indicated adequate safety factors for both undrained and drained conditions. As a result, it is recommended that soils beneath the proposed MSE walls be undercut seven feet in addition to the minimum embedment, and replaced with compacted granular fill. If soft soils are encountered while excavating for the MSE wall, these soils should also be removed and replaced with compacted granular fill.

For stability, preliminary calculations have shown that a minimum reinforcement length of 0.9(H+D) or 28.6 feet is required for stability.

> how

The total maximum settlement of the MSE wall volumes at this location was estimated to be approximately 18 inches at the centerline of the wall. Differential settlement at this location was estimated to be approximately 1.0%. MSE retaining walls are able to withstand relatively large amounts of differential settlement, typically up to 100 millimeters per 10 meters of wall length (1/100). The estimated amount of differential settlement at this site is approximately equal to the typical recommended maximum value of 1/100. Consequently, it is recommended that a wire-faced MSE wall be considered to construct the embankments at the Shumway Hollow Road crossing. Using a wire-faced MSE wall results in the internal reinforcing strips being attached to a wire facing. The advantage to using a wire-faced MSE wall is that it can tolerate significant settlement and that it can be constructed in phases. After the consolidation period is over, the final wall facing can be installed. The final wall facing is set on a leveling pad about 1 foot from the wire facing and the void between the wire facing and the final wall facing can remain open or be filled. The final wall facing can be pre-cast panels or cast-in-place.

Michael D. Weeks, P.E., P.S. April 12, 2006 Page 4

Preliminary time-rate consolidation calculations have indicated that approximately 2.7 years will be required to achieve 90 percent consolidation of foundational soils without using wick drains or other methods. It is recommended that equipment for monitoring settlement and pore water pressures be installed prior to construction to determine when sufficient consolidation has been achieved. If the previously mentioned consolidation period is of significant concern, the use of wick drains or other methods may be explored to accelerate the consolidation of foundation soils. These alternatives can be evaluated for this site upon request.

Calculations for bearing capacity, overturning, sliding, and settlement are attached for the MSE wall at the forward abutment. A drawing showing the results of the global stability analyses is also attached.

A summary of soil properties, summary of the results of calculations, and results of global stability analyses are attached.

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted,

DLZ OHIO, INC.

Steven J. Riedy Geotechnical Engineer

Arthur (Pete) Nix, P.E. Geotechnical Division Manager

Encl: As noted

cc: file

M:\proj\0121\3070.03\Stability Analyses\Documents\MSE Wall letters\07 Shumway Hollow Road\MSE Wall Findings - Shumway Hollow Rd 04-12-06 SJR.doc

³ ⁴ ⁵ ¹⁰ ¹⁵ ¹⁵	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KAR I P	2
-27.0 659.2 4 3 12 18 11 1.75 Maditim dansa hrown FINE SAND (A.3) trace gravel damp	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C

	TranSystems, Inc.	, Inc.				Project: SCI-823-0.00	Job No. 0121-3070.03
LOG OF: E	Boring	TR-24		ΓO	Location:	Date Drilled: 8/20/04 to	8/23/04
			Sample No.	ple		WATER OBSERVATIONS	
·· ···		(uį) ,			Hand Penetro- meter	Water seepage at: 6.0' er level at completion: 29.8' (includes drilling water)	STANDARD PENETRATION (N)
Depth Elev. (ff) (ff) 256.2	ied swola	Кесолец	evinQ	റ\ ടോപ്പ	(tsf)	% Clay % Aggreg % Aggreg % C. Sand % C. Sand	Natural Molsture Content, $\% - \blacksquare$ PL $+ $
11							
34.0 652.2- 35	2 2 2	18	13		0.5	Soft gray SILTY CLAY (A-6b), little fine to coarse sand, trace gravel; moist.	
-37.0 649.2						Severely weathered gray SANDSTONE argillaceous.	, , , ,
40	10 17 22	18	4			DRAFI	Q
н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						@ 43.0', augers encountered difficult drilling.	
	Core 120*	Rec 118"	ROD 77% R-1			Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, micaceous, moderately to highly fractured. @ 44.8' to 44.9',45.2',45.4',47.0' contains argillaceous laminations and fractures. @ 47.0', slightly weathered, unfractured to slightly fractured.	
55 - 632.7						Bottom of Boring - 53.5'	
1-1-							

Parenta, IIC. Location: ring TR-25 Location: No. Hand No. Hand Alows per 6 Mo. Alows per 6 Hand brown Si Blows per 6 Hand brown Si 2 4 8 3 5 1.75 2 4 8 3 2.0 damp to moist 2 4 8 3 2.55 3 2.55 1 3 1 1 2 2.55 3 2.25 4 0 4 10 9 2 1 3 1 3 1 3		Date Drilled: 8/19/04 to 8/20/04	<u>l</u>	k Aggragat K Aggragat K F. Sand F. Sand	5 5 5	4 6 - 13 37 40	ace fine sand; varved; 0 0 - 1 11 88					ilt; damp.		
0 0 0 0 0 0 0 0 0 0 0 0 0 0	Project: SCI-823-0.00		WATER OBSERVATIONS: Water seepage at: 16.0', 21.0' Water level at completion: 16.4' (includes drilling water)	DESCRIPTION	Hard brown SILT AND CLAY (A-6a), little fine to coarse sand trace gravel; damp.		Stiff to very stiff brown CLAY (A-7-6), trace fine sand; varved; damp to moist.		TRAFT	\$	• •	Loose brown FINE SAND (A-3), trace silt; damp.		
α δ δ δ δ δ δ δ δ δ δ δ δ δ		ocation:	Hand Penetro-	meter (tsf)	4.0	4.5	2.0	1.25	1.75	2.5	2.25			
	ſ		No.											
Optimize Optimize									ي 	9	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2
Original Original	s Inc	TR-2	(uį)	Кесолец					98			18	38	
	stems		M	ang per 6		ω	6	6	1 1	6	e			12
	noysiei -	Boring	н 	Elev. (f) 674.6 674.6 674.6	4	Q	1		1 1	1 1	~	4		م 1
	Cilent:	200 LO		Depth (ft)	0	ι, Γ	ц. С	10-		15 -		20-		- 75 - 75

Job No. 0121-3070.03	8/19/04 to 8/20/04	GRADATION GRADATION STANDARD PENETRATION (N) STANDARD PENETRATION (N) Natural Moisture Content, % - ● 6 M. 5 Sand 6 F. 1 PL IIII PL IIIIII PL IIIIIIIIIIIIIIIIII				
Project: SCI-823-0.00	Date Drilled:	WATER OBSERVATIONS: Water seepage at: 16.0', 21.0' Water level at completion: 16.4' (includes drilling water) DESCRIPTION	Severely weathered brown and gray SANDSTONE.	Hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, micaceous, argillaceous, massively bedded, slightly fractured. @ 32.0' to 37.0', highly fractured.	DRAFT	Bottom of Boring - 42:0'
	Location:	Sample No. Penetro- meter (tst)		13 RQD R-1 42%	RQD 90%	
2	TR-25			6 1 Rec RC 46" 42	Rec RC 72" 90	
ems, Ir	ng TR	"ð neg swold		50/5 Core R 48" 4	Core R. 72"	
Client: TranSystems, Inc.	: Boring	Elev. (ft) EAA 6	644.6	642.6 42.6	017	
ent: Tr	LOG OF:	Depth (f)		35 <u>32.0</u>	64 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

 $\left[\right]$

 \Box

 $\left[\right]$

	50.0105-1210 .001 doc			STANDARD PENETRATION (N) Natural Moisture Content, % -	$PL \qquad \qquad IL \\ Blows per foot - \bigcirc \\ 0 \qquad 0 \qquad 0 \\ 0 \qquad 0 \qquad 0 \\ 0 \qquad 0 \\$	 	0		Non-Plastic	0	<u> </u>	Q	<u>.</u>)	
		Ī			VelO %			48	<u>@</u>		· · · · · · · · · · · · · · · · · · ·			····			_
			NOL	01	#S % #S '= %			38 12									
			GRADATION		•S W %	1		<u>ة</u> ا									
94		4	8	ри	es .) %	<u>.</u>		N	0					111 17			
(614)888-0040		8/19/04		ejebi	al66∀ %		r=	0	0				· · ·				
JNTLEY ROAD, COLUMBUS, OHIO 43229 *		Date Drilled:	WATER OBSERVATIC	Water level at completion: 8.4' (includes drilling water)	DESCRIPTION	Topsoil - 12"	Hard brown CLAY (A-7-6), some to "and" fine to coarse sand; damp to moist.		Loose to medium dense orangish brown COARSE AND FINE SAND (A-3a), little silt; damp to moist.		JR DF		@ 16.0', wet.		Medium dense gray GRAVEL WITH SAND (A-1-b); contains sandstone fragments; moist.	@ 23.0' to 25.5', moderately fractured. Hard gray SANDSTONE; very fine to fine grained, argillaceous, micaceous, slightly to moderately weathered, massively bedded, slightly fractured. @ 23.1', 23.5', thin clay seams.	
		Location:	Hand	Penetro- meter	(tst)		4.5	4.5+									
	ŀ	č			/ ଽଽଈୣ				<u> </u>								2
			Sample No.		өvinQ	/		2	<i>т</i>	4	ŝ	G	~	ŵ	0		ROD 73%
2	ی م از		⊢	(u <u>i</u>) Kı	еколер	,	18	18	38	8	8	18	18	18	18		Rec F 111" 7
Transvetame Inc.			<u> </u>	,et 6	q swola		5 5 8	8 6 1	7 8	6	346	1 2 10	4	а Ф	8 13		Core F
av? ne				Etev	(f) (f) FRF 2	4				. 4	<u></u>	4	<u>2</u>	3	4	642.2	
⊢		5					11	ימי ימי		Ę		15			1 1	23.0 1 6 25	

Job No. 0121-3070.03			IDARD PENETRATIC I Moisture Content, ?	$\begin{array}{c} PL \\ Blows per foot - \bigcirc \\ 10 \\ 20 \\ 30 \\ 40 \end{array}$					
				(ei) %				_	
		GRADATION	oup	₩S % S '∃ %					
				S = %	ļ				•
	_	6 <u>8</u>		S 'O %	<u> </u>				•
	8/19/04		ອງຍຸດິຍ						
	8/19	<u> </u>	<u>.</u>					_	
Project: SCI-823-0.00	Date Dritled:	WATER OBSERVATIC	Water level at completion: 8.4' (includes drilling water)	DESCRIPTION	Hard gray SANDSTONE; very fine to fine grained, argillaceous, micaceous, slightly to moderately weathered, massively bedded, slightly fractured.	Bottom of Boring - 33.0'	HAR BO		
	Location:	Hand	Penetro- meter	(tst)					
	-1 	olo	eno.)/	ടടബപ്പ					•
		Sample No.		өv'nQ				-	
nc.	TR-26	 _ _	(ui) Vie					_	
Client: TranSystems, Inc.			ber 6"	swola		-			
ranSy	LOG OF: Boring		Elev.	(fl) 635.2	635.2-	632.2		-	
	0 0		Depth	~ ~	к. 	-33.0	% 6 75 76 76 1 1 1 1 1 1 1 1	ī	
2			2	5. 2	Ó	ന്	22 20 40 32 32 22 32 32 32 32 32 32 32 32 32 32		

24460-18345-4499-4444-445-6015181-4401-1813-90016002148 1333 - 500

Unit Weight Strength Parameter										
Zone	Soil Type	Unit Weight	Undra	nined	Dra	ined				
		(pcf)	с	ф	c'	ф'				
Reinforced Fill	Compacted Granular Fill	120	0	34	0	34				
Retained Soil	Compacted Embankment Fill	120	0	30	0	30				
Foundation Soil (Rear and Forward Abutments) (Borings TR-24,25,26)	Loose to Medium Dense Sandy Silt	125	1250	0	0	29				
Foundation Soil (Rear and Forward Abutments)	Compacted Granular Fill	125	0	36	0	36				

Soil Parameters Used in MSE Wall Stability Analyses Shumway Hollow Road

 $\left[\right]$

MSE Retaining Wall Parameters and Analyses Results Portsmouth – Minford Road (Rear and Forward Abutments) Compacted Granular Fill Foundation

Retained Soil (New Embankment) Unit Weight = 120 pcf Coefficient of Active Earth Pressure $(K_a) = 0.33$ (Based on $\Phi = 30^{\circ}$) Sliding along base of MSE wall Sliding Coefficient $(\mu)(0.67) = \tan 36^{\circ}(0.67) = 0.49$ Use $(\mu)(0.67)$ Use $(\mu)(0.67) = 0.55$ as a maximum value as per AASHTO, BDM, 303.4.1.1 Allowable Bearing Capacity - Undrained Condition $q_{all} = 18,360 \text{ psf}$ For MSE wall with minimum 28.6-foot long reinforcing Allowable Bearing Capacity - Drained Condition $q_{all} = 18,360 \text{ psf}$ For MSE wall with minimum 28.6-foot long reinforcing **Global Stability** Factor of Safety – Undrained Condition = 1.9 Factor of Safety – Drained Condition = 1.5 Factor of Safety – Seismic Condition = 1.4For MSE wall with 28.6-foot long reinforcing Estimated Settlement of MSE volume Total settlement = 18 inches Differential settlement = 1.0% = 1/100Full Height of MSE Wall = 28.8 feet Minimum Embedment Depth = 3.0 feet Minimum Length of Reinforcement for External Stability = 28.6 feet

MSE-BearingCapacity 823 over SH RD F Abutment [MSE non-coped]

			T	SUBJEC	Г <u>Clie</u>	nt TranSystems	3/ODOT D-9		JOB N	UMBER			0121-3070.	03
J	REAL .			SOBJEC	Proje	ect SCI-823 Port	smouth Bypas	<u>s</u>	SHEET	۲NO.		. .	OF	
٦					Item		r Shumway Hol	<u> </u>	COMP	. ВҮ		SJR	DATE	04/12/0
					MSE	wall settlement	Based on TR-2	4) 25	CHECI	KED BY			DATE	
					SETT	LEMENT A	NALYSIS	- EMBAN	KMEN	r –			<u> </u>	
]	Embank	<u>cment</u>	Informaiton:			Groundwa	ter Table:	D=	5.0	ft			
1		#	, > } ⊧	<u> </u>			Embankme	ent Height:	H =	28.8	ft			
1			/		'(Fill Unit W	/eight:	γ _{emb} =	120	pcf	q = 3,4	456 psf	
						\	Width of S	lope:	a =	57.6				
		<u> </u>					Top half-w	idth of Emb	: b=	75				
			\checkmark	AA		:/ *	Distance fr	rom CL:	x =	0				
				\searrow	17	7	Output Rai	nge:	z =	0	to	32 ft		
							-	ata output Atta	ched					
					V.	· •) (-					<i>.</i>	
						σ _v (2	$S_{n} := \left[\frac{1}{\pi a} \right] \left(\frac{\pi a}{\pi a} \right)$	$a(\alpha(z) + \beta$	(z) + α'((z)) + b	(α(z) +	α'(z)) + x·	(α(z) –	¢'(z)))
1	r	3 (m) ·= .4	[(b-	$\left \frac{-x}{z}\right + \operatorname{atan}\left[\frac{(b+x)}{z}\right]$] ~	(2) - etan (2+	b-x)] atom	(b-x)]	~ (7)	;=	(a+b	<u>+x</u>]	· (b	+ x)]
	ŀ	ស្រុ .≕ ស	an		·] "		z] - atan	Ţ	ແບນ	aran	L z	a		z
	-			Referen	ice: US Army	Corps of Engine	ers EM 1110-1	-1904 "Settleme	ent Analysi	is", Table	C-1			
										C	Cohesion	less		
	•	<u>Soil Pro</u>		-		id-point of layer	<u>.</u>			-	Soils		nesive Sc	oils
	No.]	Bot. of I	Laye	Soil Type	$\gamma_{\rm soil}$ (pcf) σ' _c (psf)	σ'_{o} (psf)	$\Delta \sigma z$ (psf)	<u>σ'</u> (]	psf)	C'	Cr	C _c	e。
	1	7.0	ft	Granular Fill	120	0	420	3,456	3,87	6	0.0	0.00	0.00	0.000
	2	12.0	ft	Clay	125	4,400	872	3,455	4,32	6	0.0	0.27	0.00	0.743
+	3	21.4	ft	Clay	125	4,800	1,322	3,449	4,77	2	0.0	0.27	0.00	0.743
	4	32.0	ft	Fine Sand	120	0	1,922	3,430	5,35	2	43.0	0.00	0.00	0.000
, -	5	0.0			0	0		·						
}	6	0.0			0	0								
-	7	0.0			0	0								
	8	0.0			0	0								
≀ ŀ	9	0.0			0	0						<u> </u>		
ŀ	10	0.0			0	0	<u> </u>							
							Reference: Geor						99	
	No 4	Sof41		Total Cattlesses			Overconsoli			(υ ₀ <σ	9 r.du	:11.24		
'	NO. 3 1	Settleme 0.000	ent: ft	Total Settlement		($\left(\delta_{c}\right)_{ult} = \sum \frac{1}{1}$	$\frac{C_r}{+e}$ H log	$\left \frac{\sigma_f}{\sigma'}\right $					
	2	0.539	ft	1.460 f	ŧ	E	ı Dverconsoli	U	< v/	(11'	1 - 0-)	Ean. 11 25		
	3	0.339	n ft		1	r i	-							
	4	0.110	ft			($\left(\delta_{c} \right)_{utt} = \sum \left[\frac{1}{1} \right]_{c}$	$\frac{\Box_{r}}{H} H \log \frac{G}{r}$	$\frac{1}{r_{1}^{\prime}} + \frac{1}{r_{1}^{\prime}}$	<u>∽</u> H lo	$\left \frac{\sigma_f}{\sigma}\right $			
	5			17.5 in	า		L ¹ Normally Co	v (• /	.0	(**)	1		
	6				1				/ .	u−∨ ¢∕				
	7					($(\delta_c)_{ult} = \sum_{\overline{1}}$	$\frac{\nabla e}{+e_0}H\log$	$\left \frac{\sigma_{f}}{\sigma_{c}'}\right $					
	8						1	-0	(~o)					
1	9					- c	Cohesionless	Soils $(\sigma) =$	·σ'.)					
-	-								-					
_	10													
	10					1 ($\partial_c = \sum_{ult}$	$\frac{1}{C'}H\log\left(\frac{4}{C}\right)$	$\frac{\sigma}{\sigma_0}$					

.

Transystems / ODOT D-9 . CLIENT PROJECT NO. 0121- 3070.03 PROJECT SCI-BZ3 Portsmonth Bypass SHEET NO. EERS • ARCHITECTS • SCIENTISTS SUBJECT Shumman Hollow Soil Properties COMP. BY PLANNERS + SURVEYORS 51K DATE 3-28-06 CHECKED BY (TR-25) -Based on * Procedure Adapted From FHWA Suits & Foundations * Layer 1 Depth 0'- 5.5' $\frac{MC-PL}{LL-PL} = \frac{14-22}{35-22} = -0.04 \times 0.7$ Check Priconsolidation: Overemsolidated Cp = MC (2.75) 100 = 0.385 $C_{r} = \frac{MC}{100} = 0.14$ + Layer 2 #3 Depth 5.5'- 18.0' Check Preconsolidation: $\frac{MC-PL}{LL-PL} = \frac{27-25}{66-25} = 0.05 \ 10.7$ $C_{r} = \frac{MC}{100} = 0.27$ $C_{c} = \frac{MC}{100}$ $C_{R} = \frac{MC}{1000}$ $\frac{Hc}{100} = 0.743$ Depth 18.0'- 28.0' * Layer 4 Sand C'= Differential Settlement + Assuming full heigh width of \$ 100 · ··· · ··· ··· 1.03% > 100 1.50 Excessive Differential Settle ment

CLIENT Tran Systems ODOT D-9 PROJECT NO. ____0121-3070.03 Portsmonth Bypass 501-823 SHEET NO. ENGINEERS • ARCHITECTS • SCIENTISTS SUBJECT Shumway Hollow PLANNERS . SURVEYORS DATE COMP. BY <u>51K</u> Time-Rate Celculations CHECKED BY DATE * Taken from R-3352 11= 90% → T_v= $C_V^* = 0.00014$ "sec $C_V^* = 0.085 f^{2/2}_{1/2}$ day 0.848 From Profile bead on TR-24, TR-25 & TR-26. Embedoment Overequevote & Replace 7! H= 18' - (3.0' + 5.0') = 10.0' $\mathcal{I}_{90\%} = \frac{\mathcal{T} \mathcal{H}_{v}^{2}}{c_{v}}$ 0.848 (10.0)² = 998 days 2.7 years Ξ Lgoop 0.085 * May want to Consider wick drains to accelerate Settlement should be double dramage $\psi c_{v} = 0.2$ St 2/day $t_{q_0} = \frac{0.848(5)^2}{0.085} = 249 \text{ days}$ (as based on Fig 9-5 in Ċ 0.053 0.053 $0.848(5)^2 = 106 \text{ days}$ 0.2 = 106 days $0.848(10)^2 = 424 \text{ days}$ 6.90

SJR DATE 04-12-06 FORVARD ABUTMENT STA: 384+69 MSE WALL STABILITY ANALYSIS INITIAL TRIAL REAR ABUTMENT STA 383+75 SHUMWAY HOLLOV ROAD CALC SCI-823-0, 00 MSE Wall Stability Shumway Hollow Road Forward Abutment Sta. 384+69 Based on TR-24 H=28.8' (full height) Embedment=3.0' Length=0.8(H+D)=25.5' PROJECT NO. 0121-3070, 03 Fire and Course Sond c=0 phi-32 c=0 phi'=32 Si It and Clay C-2500 phino C = 0 phi'=29 ctay c=1250 ph1=0 c=0 ph1'=30 Enbunkment c=0 ph1=30 Drained FS=1,419 Enbarkment c=0 ph1=34 ŕ. Ř. TOP DF ROCK-MSE Wall Stability Shumway Hollow Road Rear Abutment Sta. 383+75. Based on TR-24 H=28.8' (fuil height) Embedment=3.0' Length=0.8(H+D)=25.5' Wiproylo 12110070.035 lability Analyses Urawinga Weil and Embankment Profiles. Awy, 4/12/2006 247:23 PM, INCOLS 110_MARKETING_20C50 Overexcavate 5' and replace with compacted granular backfill

MSE Vall Stability Shumway Hollow Road Rear Abutment Sta. 383+75. Based on TR-24 H=28.8' (full height) Embedment=3.0' Length=0.9(H+D)=28.6'

MSE Wall Stability Shumway Hollow Road Forward Abutment Sta. 384+69 Based on TR–24 H=28.8' (full height) Embedment=3.0' Length=0.9(H+D)=28.6'

